Difference between revisions of "Template:Divisor classes"

From blackwiki
Jump to navigation Jump to search
imported>Plastikspork
(Using WP:HLIST)
imported>PrimeHunter
(Undid revision 954673663 by 87.95.193.244 (talk). No good reason for a red link here)
 
(20 intermediate revisions by 14 users not shown)
Line 1: Line 1:
 
{{Navbox
 
{{Navbox
| name = Divisor classes navbox
+
| name = Divisor classes
 +
| state = {{{state|<includeonly>{{{1|collapsed}}}</includeonly>}}}
 
| title = Divisibility-based sets of integers
 
| title = Divisibility-based sets of integers
| state = {{{state<includeonly>|collapsed</includeonly>}}}
+
| image = [[File:Lattice of the divisibility of 60.svg|175px|Divisibility of 60]]
 
| listclass = hlist
 
| listclass = hlist
| image = [[File:Lattice of the divisibility of 60.svg|200px|Divisibility of 60]]
 
  
 
| group1 = Overview
 
| group1 = Overview
| list1 =  
+
| list1 =
 
* [[Integer factorization]]
 
* [[Integer factorization]]
 
* [[Divisor]]
 
* [[Divisor]]
Line 15: Line 15:
 
* [[Fundamental theorem of arithmetic]]
 
* [[Fundamental theorem of arithmetic]]
  
 
+
| group2 = Factorization forms
| group2 = Forms of factorization
+
| list2 =
| list2 =  
+
* [[Prime number|Prime]]
* [[Prime number]]
+
* [[Composite number|Composite]]
* [[Composite number]]
+
* [[Semiprime]]
* [[Semiprime|Semiprime number]]
+
* [[Pronic number|Pronic]]
* [[Pronic number]]
+
* [[Sphenic number|Sphenic]]
* [[Sphenic number]]
+
* [[Square-free integer|Square-free]]
* [[Square-free integer|Square-free number]]
+
* [[Powerful number|Powerful]]
* [[Powerful number]]
 
 
* [[Perfect power]]
 
* [[Perfect power]]
* [[Achilles number]]
+
* [[Achilles number|Achilles]]
* [[Smooth number]]
+
* [[Smooth number|Smooth]]
* [[Regular number]]
+
* [[Regular number|Regular]]
* [[Rough number]]
+
* [[Rough number|Rough]]
* [[Unusual number]]
+
* [[Unusual number|Unusual]]
 
 
  
 
| group3 = Constrained divisor sums
 
| group3 = Constrained divisor sums
| list3 =  
+
| list3 =
* [[Perfect number]]
+
* [[Perfect number|Perfect]]
* [[Almost perfect number]]
+
* [[Almost perfect number|Almost perfect]]
* [[Quasiperfect number]]
+
* [[Quasiperfect number|Quasiperfect]]
* [[Multiply perfect number]]
+
* [[Multiply perfect number|Multiply perfect]]
* [[Hyperperfect number]]
+
* [[Hemiperfect number|Hemiperfect]]
* [[Superperfect number]]
+
* [[Hyperperfect number|Hyperperfect]]
* [[Unitary perfect number]]
+
* [[Superperfect number|Superperfect]]
* [[Semiperfect number]]
+
* [[Unitary perfect number|Unitary perfect]]
* [[Primitive semiperfect number]]
+
* [[Semiperfect number|Semiperfect]]
* [[Practical number]]
+
* [[Practical number|Practical]]
 
+
* [[Erdős–Nicolas number|Erdős–Nicolas]]
  
 
| group4 = With many divisors
 
| group4 = With many divisors
| list4 =  
+
| list4 =
* [[Abundant number]]
+
* [[Abundant number|Abundant]]
* [[Primitive abundant number]]
+
* [[Primitive abundant number|Primitive abundant]]
* [[Highly abundant number]]
+
* [[Highly abundant number|Highly abundant]]
* [[Superabundant number]]
+
* [[Superabundant number|Superabundant]]
* [[Colossally abundant number]]
+
* [[Colossally abundant number|Colossally abundant]]
* [[Highly composite number]]
+
* [[Highly composite number|Highly composite]]
* [[Superior highly composite number]]
+
* [[Superior highly composite number|Superior highly composite]]
* [[Weird number]]
+
* [[Weird number|Weird]]
  
 +
| group5 = [[Aliquot sequence]]-related
 +
| list5 =
 +
* [[Untouchable number|Untouchable]]
 +
* [[Amicable numbers|Amicable]]
 +
* [[Sociable number|Sociable]]
 +
* [[Betrothed numbers|Betrothed]]
  
| group5 = Related to [[aliquot sequence]]s
+
| group6 = [[Radix|Base]]-dependent
| list5  =  
+
| list6 =
* [[Untouchable number]]
+
* [[Equidigital number|Equidigital]]
* [[Amicable number]]
+
* [[Extravagant number|Extravagant]]
* [[Sociable number]]
+
* [[Frugal number|Frugal]]
 +
* [[Harshad number|Harshad]]
 +
* [[Polydivisible number|Polydivisible]]
 +
* [[Smith number|Smith]]
  
 +
| group7 = Other sets
 +
| list7 =
 +
* [[Arithmetic number|Arithmetic]]
 +
* [[Deficient number|Deficient]]
 +
* [[Friendly number|Friendly]]
 +
* [[Friendly number#Solitary numbers|Solitary]]
 +
* [[Sublime number|Sublime]]
 +
* [[Harmonic divisor number|Harmonic divisor]]
 +
* [[Descartes number|Descartes]]
 +
* [[Refactorable number|Refactorable]]
 +
* [[Superperfect number|Superperfect]]
  
| group6 = Other sets
+
}}<noinclude>
| list6  =  
+
{{documentation|content=
* [[Deficient number]]
 
* [[Friendly number]]
 
* [[Friendly number#Solitary numbers|Solitary number]]
 
* [[Sublime number]]
 
* [[Harmonic divisor number]]
 
* [[Frugal number]]
 
* [[Equidigital number]]
 
* [[Extravagant number]]
 
  
}}<noinclude>
+
{{collapsible option |statename=optional |default=collapsed}}
  
[[Category:Mathematics templates]]
+
==See also==
 +
*{{tl|Classes of natural numbers}}
  
[[eo:Ŝablono:Nombroj laŭ dividantoj]]
+
[[Category:Mathematics navigational boxes]]
[[fr:Modèle:Palette Ensembles de divisibilité]]
+
}}
[[sl:Predloga:Razredi deljivosti]]
 
[[th:แม่แบบ:ตัวหารจำนวนเต็ม]]
 
 
</noinclude>
 
</noinclude>

Latest revision as of 08:39, 19 December 2020

Template documentation

Initial visibility: currently defaults to collapsed

To set this template's initial visibility, the |state= parameter may be used:

  • |state=collapsed: {{Divisor classes|state=collapsed}} to show the template collapsed, i.e., hidden apart from its title bar
  • |state=expanded: {{Divisor classes|state=expanded}} to show the template expanded, i.e., fully visible
  • |state=autocollapse: {{Divisor classes|state=autocollapse}}
    • shows the template collapsed to the title bar if there is a {{navbar}}, a {{sidebar}}, or some other table on the page with the collapsible attribute
    • shows the template in its expanded state if there are no other collapsible items on the page

If the |state= parameter in the template on this page is not set, the template's initial visibility is taken from the |default= parameter in the Collapsible option template. For the template on this page, that currently evaluates to collapsed.

See also