Difference between revisions of "Template:Elastic moduli"

From blackwiki
Jump to navigation Jump to search
imported>Magic links bot
m (Replace magic links with templates per local RfC and MediaWiki RfC)
imported>Steel1943
(Update)
 
(5 intermediate revisions by 5 users not shown)
Line 13: Line 13:
 
}}
 
}}
 
{| class="wikitable collapsible" width="100%" style="font-size:smaller; background:white" align=center
 
{| class="wikitable collapsible" width="100%" style="font-size:smaller; background:white" align=center
! colspan=8 | Conversion formulas
+
! colspan=8 | Conversion formulae
 
|-
 
|-
 
| colspan=8 | Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas.
 
| colspan=8 | Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas.
Line 28: Line 28:
 
|-
 
|-
 
| style="text-align:center;" | <math>(K,\,E)</math>
 
| style="text-align:center;" | <math>(K,\,E)</math>
| style="text-align:center;" | <math>K</math>
+
| style="text-align:center;" |  
| style="text-align:center;" | <math>E</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{3K(3K-E)}{9K-E}</math>
 
| style="text-align:center;" | <math>\tfrac{3K(3K-E)}{9K-E}</math>
 
| style="text-align:center;" | <math>\tfrac{3KE}{9K-E}</math>
 
| style="text-align:center;" | <math>\tfrac{3KE}{9K-E}</math>
Line 39: Line 39:
  
 
| style="text-align:center;" | <math>(K,\,\lambda)</math>
 
| style="text-align:center;" | <math>(K,\,\lambda)</math>
| style="text-align:center;" | <math>K</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math>
 
| style="text-align:center;" | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math>
| style="text-align:center;" | <math>\lambda</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{3(K-\lambda)}{2}</math>
 
| style="text-align:center;" | <math>\tfrac{3(K-\lambda)}{2}</math>
 
| style="text-align:center;" | <math>\tfrac{\lambda}{3K-\lambda}</math>
 
| style="text-align:center;" | <math>\tfrac{\lambda}{3K-\lambda}</math>
Line 50: Line 50:
  
 
| style="text-align:center;" | <math>(K,\,G)</math>
 
| style="text-align:center;" | <math>(K,\,G)</math>
| style="text-align:center;" | <math>K</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{9KG}{3K+G}</math>
 
| style="text-align:center;" | <math>\tfrac{9KG}{3K+G}</math>
 
| style="text-align:center;" | <math>K-\tfrac{2G}{3}</math>
 
| style="text-align:center;" | <math>K-\tfrac{2G}{3}</math>
| style="text-align:center;" | <math>G</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{3K-2G}{2(3K+G)}</math>
 
| style="text-align:center;" | <math>\tfrac{3K-2G}{2(3K+G)}</math>
 
| style="text-align:center;" | <math>K+\tfrac{4G}{3}</math>
 
| style="text-align:center;" | <math>K+\tfrac{4G}{3}</math>
Line 61: Line 61:
  
 
| style="text-align:center;" | <math>(K,\,\nu)</math>
 
| style="text-align:center;" | <math>(K,\,\nu)</math>
| style="text-align:center;" | <math>K</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>3K(1-2\nu)\,</math>
 
| style="text-align:center;" | <math>3K(1-2\nu)\,</math>
 
| style="text-align:center;" | <math>\tfrac{3K\nu}{1+\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{3K\nu}{1+\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math>
 
| style="text-align:center;" | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math>
| style="text-align:center;" | <math>\nu</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{3K(1-\nu)}{1+\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{3K(1-\nu)}{1+\nu}</math>
 
|
 
|
Line 72: Line 72:
  
 
| style="text-align:center;" | <math>(K,\,M)</math>
 
| style="text-align:center;" | <math>(K,\,M)</math>
| style="text-align:center;" | <math>K</math>
+
| style="text-align:center;" |
 
| style="text-align:center;" | <math>\tfrac{9K(M-K)}{3K+M}</math>
 
| style="text-align:center;" | <math>\tfrac{9K(M-K)}{3K+M}</math>
 
| style="text-align:center;" | <math>\tfrac{3K-M}{2}</math>
 
| style="text-align:center;" | <math>\tfrac{3K-M}{2}</math>
 
| style="text-align:center;" | <math>\tfrac{3(M-K)}{4}</math>
 
| style="text-align:center;" | <math>\tfrac{3(M-K)}{4}</math>
 
| style="text-align:center;" | <math>\tfrac{3K-M}{3K+M}</math>
 
| style="text-align:center;" | <math>\tfrac{3K-M}{3K+M}</math>
| style="text-align:center;" | <math>M</math>
+
| style="text-align:center;" |  
 
|
 
|
  
Line 84: Line 84:
 
| style="text-align:center;" | <math>(E,\,\lambda)</math>
 
| style="text-align:center;" | <math>(E,\,\lambda)</math>
 
| style="text-align:center;" | <math>\tfrac{E + 3\lambda + R}{6}</math>
 
| style="text-align:center;" | <math>\tfrac{E + 3\lambda + R}{6}</math>
| style="text-align:center;" | <math>E</math>
+
| style="text-align:center;" |  
| style="text-align:center;" | <math>\lambda</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{E-3\lambda+R}{4}</math>
 
| style="text-align:center;" | <math>\tfrac{E-3\lambda+R}{4}</math>
 
| style="text-align:center;" | <math>\tfrac{2\lambda}{E+\lambda+R}</math>
 
| style="text-align:center;" | <math>\tfrac{2\lambda}{E+\lambda+R}</math>
Line 95: Line 95:
 
| style="text-align:center;" | <math>(E,\,G)</math>
 
| style="text-align:center;" | <math>(E,\,G)</math>
 
| style="text-align:center;" | <math>\tfrac{EG}{3(3G-E)}</math>
 
| style="text-align:center;" | <math>\tfrac{EG}{3(3G-E)}</math>
| style="text-align:center;" | <math>E</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{G(E-2G)}{3G-E}</math>
 
| style="text-align:center;" | <math>\tfrac{G(E-2G)}{3G-E}</math>
| style="text-align:center;" | <math>G</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{E}{2G}-1</math>
 
| style="text-align:center;" | <math>\tfrac{E}{2G}-1</math>
 
| style="text-align:center;" | <math>\tfrac{G(4G-E)}{3G-E}</math>
 
| style="text-align:center;" | <math>\tfrac{G(4G-E)}{3G-E}</math>
Line 106: Line 106:
 
| style="text-align:center;" | <math>(E,\,\nu)</math>
 
| style="text-align:center;" | <math>(E,\,\nu)</math>
 
| style="text-align:center;" | <math>\tfrac{E}{3(1-2\nu)}</math>
 
| style="text-align:center;" | <math>\tfrac{E}{3(1-2\nu)}</math>
| style="text-align:center;" | <math>E</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math>
 
| style="text-align:center;" | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math>
 
| style="text-align:center;" | <math>\tfrac{E}{2(1+\nu)}</math>  
 
| style="text-align:center;" | <math>\tfrac{E}{2(1+\nu)}</math>  
| style="text-align:center;" | <math>\nu</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math>
 
| style="text-align:center;" | <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math>
 
|
 
|
Line 117: Line 117:
 
| style="text-align:center;" | <math>(E,\,M)</math>
 
| style="text-align:center;" | <math>(E,\,M)</math>
 
| style="text-align:center;" | <math>\tfrac{3M-E+S}{6}</math>
 
| style="text-align:center;" | <math>\tfrac{3M-E+S}{6}</math>
| style="text-align:center;" | <math>E</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{M-E+S}{4}</math>
 
| style="text-align:center;" | <math>\tfrac{M-E+S}{4}</math>
 
| style="text-align:center;" | <math>\tfrac{3M+E-S}{8}</math>  
 
| style="text-align:center;" | <math>\tfrac{3M+E-S}{8}</math>  
 
| style="text-align:center;" | <math>\tfrac{E-M+S}{4M}</math>
 
| style="text-align:center;" | <math>\tfrac{E-M+S}{4M}</math>
| style="text-align:center;" | <math>M</math>
+
| style="text-align:center;" |  
| style="text-align:center;" | <p> <math>S=\pm\sqrt{E^2+9M^2-10EM}</math><br />  
+
| style="text-align:center;" | <math>S=\pm\sqrt{E^2+9M^2-10EM}</math><br />  
 
There are two valid solutions.<br />  
 
There are two valid solutions.<br />  
 
The plus sign leads to <math>\nu\geq 0</math>.<br />  
 
The plus sign leads to <math>\nu\geq 0</math>.<br />  
The minus sign leads to <math>\nu\leq 0</math>.<br />
+
The minus sign leads to <math>\nu\leq 0</math>.<br /></p>
  
 
|-
 
|-
Line 132: Line 132:
 
| style="text-align:center;" | <math>\lambda+ \tfrac{2G}{3}</math>
 
| style="text-align:center;" | <math>\lambda+ \tfrac{2G}{3}</math>
 
| style="text-align:center;" | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math>
 
| style="text-align:center;" | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math>
| style="text-align:center;" | <math>\lambda</math>
+
| style="text-align:center;" |  
| style="text-align:center;" | <math>G</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{\lambda}{2(\lambda + G)}</math>
 
| style="text-align:center;" | <math>\tfrac{\lambda}{2(\lambda + G)}</math>
 
| style="text-align:center;" | <math>\lambda+2G\,</math>
 
| style="text-align:center;" | <math>\lambda+2G\,</math>
Line 143: Line 143:
 
| style="text-align:center;" | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math>
| style="text-align:center;" | <math>\lambda</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math>
| style="text-align:center;" | <math>\nu</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{\lambda(1-\nu)}{\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{\lambda(1-\nu)}{\nu}</math>
 
| style="text-align:center;" | Cannot be used when <math>\nu=0 \Leftrightarrow \lambda=0</math>
 
| style="text-align:center;" | Cannot be used when <math>\nu=0 \Leftrightarrow \lambda=0</math>
Line 154: Line 154:
 
| style="text-align:center;" | <math>\tfrac{M + 2\lambda}{3}</math>
 
| style="text-align:center;" | <math>\tfrac{M + 2\lambda}{3}</math>
 
| style="text-align:center;" | <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math>
 
| style="text-align:center;" | <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math>
| style="text-align:center;" | <math>\lambda</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{M-\lambda}{2}</math>
 
| style="text-align:center;" | <math>\tfrac{M-\lambda}{2}</math>
 
| style="text-align:center;" | <math>\tfrac{\lambda}{M+\lambda}</math>
 
| style="text-align:center;" | <math>\tfrac{\lambda}{M+\lambda}</math>
| style="text-align:center;" | <math>M</math>
+
| style="text-align:center;" |  
 
|
 
|
  
Line 166: Line 166:
 
| style="text-align:center;" | <math>2G(1+\nu)\,</math>
 
| style="text-align:center;" | <math>2G(1+\nu)\,</math>
 
| style="text-align:center;" | <math>\tfrac{2 G \nu}{1-2\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{2 G \nu}{1-2\nu}</math>
| style="text-align:center;" | <math>G</math>
+
| style="text-align:center;" |  
| style="text-align:center;" | <math>\nu</math>
+
| style="text-align:center;" |  
 
| style="text-align:center;" | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math>
 
| style="text-align:center;" | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math>
 
|
 
|
Line 177: Line 177:
 
| style="text-align:center;" | <math>\tfrac{G(3M-4G)}{M-G}</math>
 
| style="text-align:center;" | <math>\tfrac{G(3M-4G)}{M-G}</math>
 
| style="text-align:center;" | <math>M - 2G\,</math>
 
| style="text-align:center;" | <math>M - 2G\,</math>
| style="text-align:center;" | <math>G</math>
+
| style="text-align:center;" |
 
| style="text-align:center;" | <math>\tfrac{M - 2G}{2M - 2G}</math>
 
| style="text-align:center;" | <math>\tfrac{M - 2G}{2M - 2G}</math>
| style="text-align:center;" | <math>M</math>
+
| style="text-align:center;" |  
 
|
 
|
  
Line 189: Line 189:
 
| style="text-align:center;" | <math>\tfrac{M \nu}{1-\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{M \nu}{1-\nu}</math>
 
| style="text-align:center;" | <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math>
 
| style="text-align:center;" | <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math>
| style="text-align:center;" | <math>\nu</math>
+
| style="text-align:center;" |  
| style="text-align:center;" | <math>M</math>
+
| style="text-align:center;" |  
 
|
 
|
  
 
|}<noinclude>
 
|}<noinclude>
 
+
{{Documentation}}
The stiffness matrix (9 by 9, or 6 by 6 in [[Voigt notation]]) in [[Hooke's law]] (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.
 
 
 
==References==
 
* G. Mavko, T. Mukerji, J. Dvorkin. ''The Rock Physics Handbook''. Cambridge University Press 2003 (paperback). {{ISBN|0-521-54344-4}}
 
 
 
[[Category:Physics templates]]
 
 
 
 
</noinclude>
 
</noinclude>

Latest revision as of 23:16, 1 February 2019

Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas.
<math>K=\,</math> <math>E=\, </math> <math>\lambda=\,</math> <math>G=\, </math> <math>\nu=\,</math> <math>M=\,</math> Notes
<math>(K,\,E)</math> <math>\tfrac{3K(3K-E)}{9K-E}</math> <math>\tfrac{3KE}{9K-E}</math> <math>\tfrac{3K-E}{6K}</math> <math>\tfrac{3K(3K+E)}{9K-E}</math>
<math>(K,\,\lambda)</math> <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> <math>\tfrac{3(K-\lambda)}{2}</math> <math>\tfrac{\lambda}{3K-\lambda}</math> <math>3K-2\lambda\,</math>
<math>(K,\,G)</math> <math>\tfrac{9KG}{3K+G}</math> <math>K-\tfrac{2G}{3}</math> <math>\tfrac{3K-2G}{2(3K+G)}</math> <math>K+\tfrac{4G}{3}</math>
<math>(K,\,\nu)</math> <math>3K(1-2\nu)\,</math> <math>\tfrac{3K\nu}{1+\nu}</math> <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> <math>\tfrac{3K(1-\nu)}{1+\nu}</math>
<math>(K,\,M)</math> <math>\tfrac{9K(M-K)}{3K+M}</math> <math>\tfrac{3K-M}{2}</math> <math>\tfrac{3(M-K)}{4}</math> <math>\tfrac{3K-M}{3K+M}</math>
<math>(E,\,\lambda)</math> <math>\tfrac{E + 3\lambda + R}{6}</math> <math>\tfrac{E-3\lambda+R}{4}</math> <math>\tfrac{2\lambda}{E+\lambda+R}</math> <math>\tfrac{E-\lambda+R}{2}</math> <math>R=\sqrt{E^2+9\lambda^2 + 2E\lambda}</math>
<math>(E,\,G)</math> <math>\tfrac{EG}{3(3G-E)}</math> <math>\tfrac{G(E-2G)}{3G-E}</math> <math>\tfrac{E}{2G}-1</math> <math>\tfrac{G(4G-E)}{3G-E}</math>
<math>(E,\,\nu)</math> <math>\tfrac{E}{3(1-2\nu)}</math> <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> <math>\tfrac{E}{2(1+\nu)}</math> <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math>
<math>(E,\,M)</math> <math>\tfrac{3M-E+S}{6}</math> <math>\tfrac{M-E+S}{4}</math> <math>\tfrac{3M+E-S}{8}</math> <math>\tfrac{E-M+S}{4M}</math> <math>S=\pm\sqrt{E^2+9M^2-10EM}</math>

There are two valid solutions.
The plus sign leads to <math>\nu\geq 0</math>.

The minus sign leads to <math>\nu\leq 0</math>.

<math>(\lambda,\,G)</math> <math>\lambda+ \tfrac{2G}{3}</math> <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> <math>\tfrac{\lambda}{2(\lambda + G)}</math> <math>\lambda+2G\,</math>
<math>(\lambda,\,\nu)</math> <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> <math>\tfrac{\lambda(1-\nu)}{\nu}</math> Cannot be used when <math>\nu=0 \Leftrightarrow \lambda=0</math>
<math>(\lambda,\,M)</math> <math>\tfrac{M + 2\lambda}{3}</math> <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math> <math>\tfrac{M-\lambda}{2}</math> <math>\tfrac{\lambda}{M+\lambda}</math>
<math>(G,\,\nu)</math> <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> <math>2G(1+\nu)\,</math> <math>\tfrac{2 G \nu}{1-2\nu}</math> <math>\tfrac{2G(1-\nu)}{1-2\nu} </math>
<math>(G,\,M)</math> <math>M - \tfrac{4G}{3}</math> <math>\tfrac{G(3M-4G)}{M-G}</math> <math>M - 2G\,</math> <math>\tfrac{M - 2G}{2M - 2G}</math>
<math>(\nu,\,M)</math> <math>\tfrac{M(1+\nu)}{3(1-\nu)}</math> <math>\tfrac{M(1+\nu)(1-2\nu)}{1-\nu}</math> <math>\tfrac{M \nu}{1-\nu}</math> <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math>
50px Template documentation[view] [edit] [history] [purge]

Usage

The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.

References

  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4