Difference between revisions of "Template:Intmath/testcases"

From blackwiki
Jump to navigation Jump to search
imported>Tentacles
imported>Jdaloner
m (Updated transclusions.)
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
:''{{Purge|Purge this page's server cache.}}''
 
:''{{Purge|Purge this page's server cache.}}''
  
'''''Note''': the ''{{tlx|intmath/sandbox}}'' code is tweaked and/or optimized for use inside the ''{{tlx|math}}'' template.''
+
'''''Note''': the ''{{tlx|intmath/sandbox}}'' code is tweaked and/or optimized for use inside the ''{{tlx|math}}'' and ''{{tlx|bigmath}}'' templates.''
  
In IE, except for <tt>int</tt>, all the integrals seem to render in the [[Template talk:Intmath#Beautiful integral symbols in font-family: 'Lucida Sans Unicode';|beautiful font 'Lucida Sans Unicode']], but in Firefox we get this ugly font (it is passable for text style, but would be really ugly in display style)! In which [ugly] font do the integral symbols, other than <tt>int</tt>, render? Also, in which font does <tt>int</tt> render? &mdash; [[User:Tentacles|Tentacles]]<sup>[[User_talk:Tentacles|Talk]] or <span style="font-size: 125%;">✉</span> [[Special:EmailUser/Tentacles|<tt>mailto:</tt>''Tentacles'']]</sup> 17:50, 22 March 2016 (UTC)
+
In IE, except for <code>int</code>, all the integrals seem to render in the [[Template talk:Intmath#Beautiful integral symbols in font-family: 'Lucida Sans Unicode';|beautiful font 'Lucida Sans Unicode']], but in Firefox we get this ugly font (it is passable for text style, but would be really ugly in display style)! In which [ugly] font do the integral symbols, other than <code>int</code>, render? Also, in which font does <code>int</code> render? &mdash; [[User:Tentacles|Tentacles]]<sup>[[User_talk:Tentacles|Talk]] or <span style="font-size: 125%;">✉</span> [[Special:EmailUser/Tentacles|<code>mailto:</code>''Tentacles'']]</sup> 17:50, 22 March 2016 (UTC)
 
__TOC__
 
__TOC__
===No {{tl|math}}===
+
== No {{tl|math}} ==
  
 
Compare vertical alignment and obliqueness of [rotated] int with other [italic] integral symbols:
 
Compare vertical alignment and obliqueness of [rotated] int with other [italic] integral symbols:
  
 
:{{intmath/sandbox|int}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}}
 
:{{intmath/sandbox|int}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}}
 
  
 
:<code><nowiki>{{intmath/sandbox|int}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}}</nowiki></code>
 
:<code><nowiki>{{intmath/sandbox|int}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}}</nowiki></code>
Line 16: Line 15:
 
[[Gamma function]] (non-italic int as default)
 
[[Gamma function]] (non-italic int as default)
  
:Sandbox Γ(''z'') = {{intmath/sandbox||0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''
+
:'''Sandbox:''' Γ(''z'') = {{intmath/sandbox||0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''<!--    -->&nbsp;&nbsp;&nbsp;&nbsp;''(With the ''{{tl|math}}'' template, the limits have a much better alignment with the integral symbol.)''
:Current Γ(''z'') = {{intmath||0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''
+
:'''Current:''' Γ(''z'') = {{intmath||0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''
  
 
:<code><nowiki>Γ(''z'') = {{intmath||0|∞}} ''e''<sup>−''t''</sup>&amp;#x200A;<!-- hair space -->''t''&amp;#x200A;<!-- hair space --><sup>''z''&amp;#x200A;<!-- hair space -->−&amp;#x200A;<!-- hair space -->1</sup>''dt''</nowiki></code>
 
:<code><nowiki>Γ(''z'') = {{intmath||0|∞}} ''e''<sup>−''t''</sup>&amp;#x200A;<!-- hair space -->''t''&amp;#x200A;<!-- hair space --><sup>''z''&amp;#x200A;<!-- hair space -->−&amp;#x200A;<!-- hair space -->1</sup>''dt''</nowiki></code>
Line 23: Line 22:
 
[[Gamma function]]
 
[[Gamma function]]
  
:Sandbox Γ(''z'') = {{intmath/sandbox|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z'' − 1</sup>''dt''
+
:'''Sandbox:''' Γ(''z'') = {{intmath/sandbox|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z'' − 1</sup>''dt''<!--    -->&nbsp;&nbsp;&nbsp;&nbsp;''(With the ''{{tl|math}}'' template, the limits have a much better alignment with the integral symbol.)''  
:Current Γ(''z'') = {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''
+
:'''Current:''' Γ(''z'') = {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''
  
 
:<code><nowiki>Γ(''z'') = {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&amp;#x200A;<!-- hair space -->''t''&amp;#x200A;<!-- hair space --><sup>''z''&amp;#x200A;<!-- hair space -->−&amp;#x200A;<!-- hair space -->1</sup>''dt''</nowiki></code>
 
:<code><nowiki>Γ(''z'') = {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&amp;#x200A;<!-- hair space -->''t''&amp;#x200A;<!-- hair space --><sup>''z''&amp;#x200A;<!-- hair space -->−&amp;#x200A;<!-- hair space -->1</sup>''dt''</nowiki></code>
Line 30: Line 29:
 
[[Line integral]]
 
[[Line integral]]
  
:Sandbox {{intmath/sandbox|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' = −{{intmath/sandbox|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''
+
:'''Sandbox:''' {{intmath/sandbox|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' = −{{intmath/sandbox|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''
:Current {{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' = −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''
+
:'''Current:''' {{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' = −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''
  
 
:<code><nowiki>{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' = −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''</nowiki></code>
 
:<code><nowiki>{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' = −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''</nowiki></code>
Line 37: Line 36:
 
[[Maxwell's equations]]
 
[[Maxwell's equations]]
  
Sandbox
+
'''Sandbox:'''
 +
 
 
:Gauss's law {{intmath/sandbox|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' = {{sfrac|1|''ε''<sub>0</sub>}}{{intmath/sandbox|iiint|&Omega;}} ''ρ'' ''dV''
 
:Gauss's law {{intmath/sandbox|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' = {{sfrac|1|''ε''<sub>0</sub>}}{{intmath/sandbox|iiint|&Omega;}} ''ρ'' ''dV''
 
:Gauss's law for magnetism {{intmath/sandbox|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' = 0
 
:Gauss's law for magnetism {{intmath/sandbox|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' = 0
 
:Maxwell–Faraday equation {{intmath/sandbox|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = −{{intmath/sandbox|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''
 
:Maxwell–Faraday equation {{intmath/sandbox|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = −{{intmath/sandbox|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''
:Ampère's circuital law {{intmath/sandbox|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = {{intmath/sandbox|iint|&Sigma;}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''
+
:Ampère's circuital law {{intmath/sandbox|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = {{intmath/sandbox|iint|&Sigma;}} {{big|(}}&#x200A;<!-- hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''
 +
 
 +
'''Current:'''
  
Current
 
 
:Gauss's law {{intmath|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' = {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|&Omega;}} ''ρ'' ''dV''
 
:Gauss's law {{intmath|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' = {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|&Omega;}} ''ρ'' ''dV''
 
 
:Gauss's law for magnetism {{intmath|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' = 0
 
:Gauss's law for magnetism {{intmath|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' = 0
 
 
:Maxwell–Faraday equation {{intmath|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = −{{intmath|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''
 
:Maxwell–Faraday equation {{intmath|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = −{{intmath|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''
 
+
:Ampère's circuital law {{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = {{intmath|iint|&Sigma;}} {{big|(}}&#x200A;<!-- hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''
:Ampère's circuital law {{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = {{intmath|iint|&Sigma;}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''
 
  
 
:<code><nowiki>{{intmath|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' = {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|&Omega;}} ''ρ'' ''dV''</nowiki></code>
 
:<code><nowiki>{{intmath|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' = {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|&Omega;}} ''ρ'' ''dV''</nowiki></code>
 
 
:<code><nowiki>{{intmath|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' = 0</nowiki></code>
 
:<code><nowiki>{{intmath|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' = 0</nowiki></code>
 
 
:<code><nowiki>{{intmath|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = −{{intmath|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''</nowiki></code>
 
:<code><nowiki>{{intmath|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = −{{intmath|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''</nowiki></code>
 +
:<code><nowiki>{{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = {{intmath|iint|&Sigma;}} {{big|(}}&#x200A;<!-- hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''</nowiki></code>
  
:<code><nowiki>{{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' = {{intmath|iint|&Sigma;}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''
+
== {{tl|math}} ==
</nowiki></code>
 
 
 
==={{tl|math}}===
 
  
 
Compare vertical alignment and obliqueness of [rotated] int with other [italic] integral symbols:
 
Compare vertical alignment and obliqueness of [rotated] int with other [italic] integral symbols:
  
 
:{{math| {{intmath/sandbox|int}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}} }}
 
:{{math| {{intmath/sandbox|int}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}} }}
 
  
 
:<code><nowiki>{{math| {{intmath/sandbox|int}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}} }}</nowiki></code>
 
:<code><nowiki>{{math| {{intmath/sandbox|int}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}} }}</nowiki></code>
Line 72: Line 65:
 
[[Gamma function]] (non-italic int as default)
 
[[Gamma function]] (non-italic int as default)
  
:Sandbox {{math|Γ(''z'') {{=}} {{intmath/sandbox||0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''}}
+
:'''Sandbox:''' {{math|Γ(''z'') {{=}} {{intmath/sandbox||0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''}}
:Current {{math|Γ(''z'') {{=}} {{intmath||0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''}}
+
:'''Current:''' {{math|Γ(''z'') {{=}} {{intmath||0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''}}
  
 
:<code><nowiki>{{math|Γ(''z'') {{=}} {{intmath||0|∞}} ''e''<sup>−''t''</sup>&amp;#x200A;<!-- hair space -->''t''&amp;#x200A;<!-- hair space --><sup>''z''&amp;#x200A;<!-- hair space -->−&amp;#x200A;<!-- hair space -->1</sup>''dt''}}</nowiki></code>
 
:<code><nowiki>{{math|Γ(''z'') {{=}} {{intmath||0|∞}} ''e''<sup>−''t''</sup>&amp;#x200A;<!-- hair space -->''t''&amp;#x200A;<!-- hair space --><sup>''z''&amp;#x200A;<!-- hair space -->−&amp;#x200A;<!-- hair space -->1</sup>''dt''}}</nowiki></code>
Line 79: Line 72:
 
[[Gamma function]]
 
[[Gamma function]]
  
:Sandbox {{math|Γ(''z'') {{=}} {{intmath/sandbox|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''}}
+
:'''Sandbox:''' {{math|Γ(''z'') {{=}} {{intmath/sandbox|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''}}
:Current {{math|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x2009;<!-- thin space -->−&#x2009;<!-- thin space -->1</sup>''dt''}}
+
:'''Current:''' {{math|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x2009;<!-- thin space -->−&#x2009;<!-- thin space -->1</sup>''dt''}}
  
 
:<code><nowiki>{{math|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&amp;#x200A;<!-- hair space -->''t''&amp;#x200A;<!-- hair space --><sup>''z''&amp;#x200A;<!-- hair space -->−&amp;#x200A;<!-- hair space -->1</sup>''dt''}}</nowiki></code>
 
:<code><nowiki>{{math|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&amp;#x200A;<!-- hair space -->''t''&amp;#x200A;<!-- hair space --><sup>''z''&amp;#x200A;<!-- hair space -->−&amp;#x200A;<!-- hair space -->1</sup>''dt''}}</nowiki></code>
Line 86: Line 79:
 
[[Line integral]]
 
[[Line integral]]
  
:Sandbox {{math|{{intmath/sandbox|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' {{=}} −{{intmath/sandbox|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''}}
+
:'''Sandbox:''' {{math|{{intmath/sandbox|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' {{=}} −{{intmath/sandbox|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''}}
:Current {{math|{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' {{=}} −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''}}
+
:'''Current:''' {{math|{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' {{=}} −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''}}
  
 
:<code><nowiki>{{math|{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' {{=}} −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''}}</nowiki></code>
 
:<code><nowiki>{{math|{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' {{=}} −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''}}</nowiki></code>
Line 93: Line 86:
 
[[Maxwell's equations]]
 
[[Maxwell's equations]]
  
Sandbox
+
'''Sandbox:'''
 +
 
 
:Gauss's law {{math|{{intmath/sandbox|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath/sandbox|iiint|&Omega;}} ''ρ'' ''dV''}}
 
:Gauss's law {{math|{{intmath/sandbox|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath/sandbox|iiint|&Omega;}} ''ρ'' ''dV''}}
 
 
:Gauss's law for magnetism {{math|{{intmath/sandbox|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' {{=}} 0}}
 
:Gauss's law for magnetism {{math|{{intmath/sandbox|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' {{=}} 0}}
 
 
:Maxwell–Faraday equation {{math|{{intmath/sandbox|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} −{{intmath/sandbox|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}
 
:Maxwell–Faraday equation {{math|{{intmath/sandbox|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} −{{intmath/sandbox|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}
 +
:Ampère's circuital law {{math|{{intmath/sandbox|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath/sandbox|iint|&Sigma;}} {{big|(}}&#x200A;<!-- 1 hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}
  
:Ampère's circuital law {{math|{{intmath/sandbox|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath/sandbox|iint|&Sigma;}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''}}
+
'''Current:'''
 
+
Current
 
 
:Gauss's law {{math|{{intmath|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|&Omega;}} ''ρ'' ''dV''}}
 
:Gauss's law {{math|{{intmath|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|&Omega;}} ''ρ'' ''dV''}}
 
 
:Gauss's law for magnetism {{math|{{intmath|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' {{=}} 0}}
 
:Gauss's law for magnetism {{math|{{intmath|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' {{=}} 0}}
 +
:Maxwell–Faraday equation {{math|{{intmath|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} −{{intmath|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}
 +
:Ampère's circuital law {{math|{{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath|iint|&Sigma;}} {{big|(}}&#x200A;<!-- 1 hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}
  
:Maxwell–Faraday equation {{math|{{intmath|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} −{{intmath|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}
+
:<code><nowiki>{{math|{{intmath|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|&Omega;}} ''ρ'' ''dV''}}</nowiki></code>
 +
:<code><nowiki>{{math|{{intmath|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' {{=}} 0}}</nowiki></code>
 +
:<code><nowiki>{{math|{{intmath|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} −{{intmath|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}</nowiki></code>
 +
:<code><nowiki>{{math|{{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath|iint|&Sigma;}} {{big|(}}&#x200A;<!-- 1 hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}</nowiki></code>
  
:Ampère's circuital law {{math|{{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath|iint|&Sigma;}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''}}
+
== Text style inline formulae ==
  
 +
=== {{tl|math}} ===
  
:<code><nowiki>{{math|{{intmath|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|&Omega;}} ''ρ'' ''dV''}}</nowiki></code>
+
'''Sandbox:''' ''Line spacing is undisturbed.''
  
:<code><nowiki>{{math|{{intmath|oiint|∂&Omega;}} '''B''' ∙ ''d'''''S''' {{=}} 0}}</nowiki></code>
+
[[Lorem ipsum]] dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Gauss's Law: {{math|''ε''<sub>0</sub>{{thin space}}{{intmath/sandbox|oiint|∂Ω}} '''E''' ∙ ''d'''''S'''{{thin space}}{{thin space}}{{=}}{{thin space}}{{intmath/sandbox|iiint|Ω}} ''ρ'' ''dV''.}} Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. {{math|Γ(''z''){{thin space}}{{thin space}}{{=}}{{thin space}}{{thin space}}{{intmath/sandbox|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''.}} Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
  
:<code><nowiki>{{math|{{intmath|oint|∂&Sigma;}} '''E''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} −{{intmath|iint|&Sigma;}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}</nowiki></code>
+
'''Current:''' ''Messes up the line spacing.''
  
:<code><nowiki>{{math|{{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath|iint|&Sigma;}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|'''E'''|∂''t''}}) ∙ ''d'''''S'''}}
+
[[Lorem ipsum]] dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Gauss's Law: {{math|''ε''<sub>0</sub>{{thin space}}{{intmath|oiint|∂Ω}} '''E''' ∙ ''d'''''S'''{{thin space}}{{thin space}}{{=}}{{thin space}}{{intmath|iiint|Ω}} ''ρ'' ''dV''.}} Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. {{math|Γ(''z''){{thin space}}{{thin space}}{{=}}{{thin space}}{{thin space}}{{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''.}} Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
</nowiki></code>
 
  
 
== Display style standalone formulae ==
 
== Display style standalone formulae ==
  
=== {{tl|Bigmath}} ===
+
=== {{tl|bigmath}} ===
  
 
Compare vertical alignment and obliqueness of [rotated] int with other [italic] integral symbols:
 
Compare vertical alignment and obliqueness of [rotated] int with other [italic] integral symbols:
  
 
:{{Bigmath| {{intmath/sandbox|int}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}} }}
 
:{{Bigmath| {{intmath/sandbox|int}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}} }}
 
  
 
:<code><nowiki>{{Bigmath| {{intmath/sandbox|int}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}} }}</nowiki></code>
 
:<code><nowiki>{{Bigmath| {{intmath/sandbox|int}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&amp;#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}} }}</nowiki></code>
Line 134: Line 129:
 
[[Gamma function]]
 
[[Gamma function]]
  
'''LaTeX'''
+
'''LaTeX:'''
  
 
The Gamma function is defined as
 
The Gamma function is defined as
Line 140: Line 135:
 
:<math>\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} \, dt.</math>
 
:<math>\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} \, dt.</math>
  
'''Sandbox'''  
+
'''Sandbox:'''  
  
 
The Gamma function is defined as
 
The Gamma function is defined as
Line 146: Line 141:
 
:{{Bigmath|Γ(''z'') {{=}} {{intmath/sandbox|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''.}}
 
:{{Bigmath|Γ(''z'') {{=}} {{intmath/sandbox|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''.}}
  
'''Current'''  
+
'''Current:'''  
  
 
The Gamma function is defined as
 
The Gamma function is defined as
  
 
:{{Bigmath|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''.}}
 
:{{Bigmath|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''.}}
 
  
 
:<code><nowiki>{{Bigmath|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&amp;#x200A;<!-- hair space -->''t''&amp;#x200A;<!-- hair space --><sup>''z''&amp;#x200A;<!-- hair space -->−&amp;#x200A;<!-- hair space -->1</sup>''dt''.}}</nowiki></code>
 
:<code><nowiki>{{Bigmath|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&amp;#x200A;<!-- hair space -->''t''&amp;#x200A;<!-- hair space --><sup>''z''&amp;#x200A;<!-- hair space -->−&amp;#x200A;<!-- hair space -->1</sup>''dt''.}}</nowiki></code>
Line 157: Line 151:
 
[[Maxwell's equations]]
 
[[Maxwell's equations]]
  
'''LaTeX'''
+
'''LaTeX:'''
  
 
Gauss's law:
 
Gauss's law:
  
 
:{{oiint
 
:{{oiint
   | intsubscpt=<math>{\scriptstyle \partial \Omega }</math>
+
   | intsubscpt = <math>{\scriptstyle \partial \Omega }</math>
   | integrand=<math>\mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_0} \iiint_\Omega \rho \, dV</math>
+
   | integrand = <math>\mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_0} \iiint_\Omega \rho \, dV</math>
 
   }}
 
   }}
  
Line 181: Line 175:
 
:<math>\oint_{\partial \Sigma} \mathbf{B} \cdot d\boldsymbol{\ell} = \iint_{\Sigma} \left( \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} \right) \cdot d\mathbf{S} </math>
 
:<math>\oint_{\partial \Sigma} \mathbf{B} \cdot d\boldsymbol{\ell} = \iint_{\Sigma} \left( \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} \right) \cdot d\mathbf{S} </math>
  
'''Sandbox'''
+
'''Sandbox:'''
  
 
Gauss's law:  
 
Gauss's law:  
Line 197: Line 191:
 
Ampère's circuital law:  
 
Ampère's circuital law:  
  
:{{Bigmath|{{intmath/sandbox|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath/sandbox|iint|&Sigma;}} {{big|(}}''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}
+
:{{Bigmath|{{intmath/sandbox|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath/sandbox|iint|&Sigma;}} {{big|(}}&#x200A;<!-- 1 hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}
  
'''Current'''
+
'''Current:'''
 
   
 
   
 
Gauss's law:  
 
Gauss's law:  
Line 215: Line 209:
 
Ampère's circuital law:  
 
Ampère's circuital law:  
  
:{{Bigmath|{{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath|iint|&Sigma;}} {{big|(}}''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}
+
:{{Bigmath|{{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath|iint|&Sigma;}} {{big|(}}&#x200A;<!-- 1 hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}
 
 
  
 
:<code><nowiki>
 
:<code><nowiki>
Line 239: Line 232:
 
Ampère's circuital law:  
 
Ampère's circuital law:  
  
:{{Bigmath|{{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath|iint|&Sigma;}} {{big|(}}''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}
+
:{{Bigmath|{{intmath|oint|∂&Sigma;}} '''B''' ∙ ''d''<nowiki />'''''&#x2113;<!-- ℓ -->''''' {{=}} {{intmath|iint|&Sigma;}} {{big|(}}&#x200A;<!-- 1 hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}
 
</nowiki></code>
 
</nowiki></code>
  
 
== \iiiint and \idotsint ==
 
== \iiiint and \idotsint ==
  
'''LaTeX'''  
+
'''LaTeX:'''  
  
 
<code><nowiki><math>H {{=}} \iiiint_{\rm 4\mbox{-}ball} dH</math></nowiki></code> yields  
 
<code><nowiki><math>H {{=}} \iiiint_{\rm 4\mbox{-}ball} dH</math></nowiki></code> yields  
Line 262: Line 255:
 
:<math>H {{=}} \int \!\cdots\! \int_{n{\rm \mbox{-}ball}} dH</math>
 
:<math>H {{=}} \int \!\cdots\! \int_{n{\rm \mbox{-}ball}} dH</math>
  
'''HTML'''
+
'''Sandbox:'''
  
 
<code><nowiki>{{math| H {{=}} {{intmath/sandbox|iiiint|4-ball}} ''dH'' }}</nowiki></code> yields the HTML text style {{math| H {{=}} {{intmath/sandbox|iiiint|4-ball}} ''dH'' }}   
 
<code><nowiki>{{math| H {{=}} {{intmath/sandbox|iiiint|4-ball}} ''dH'' }}</nowiki></code> yields the HTML text style {{math| H {{=}} {{intmath/sandbox|iiiint|4-ball}} ''dH'' }}   
Line 278: Line 271:
 
== Quotient of integrals ==
 
== Quotient of integrals ==
  
'''LaTeX'''
+
'''LaTeX:'''
  
 
<code><nowiki><math>\frac{ \int_0^\infty x^{2n} e^{-a x^2}\,dx }{ \int_0^\infty x^{2(n-1)} e^{-a x^2}\,dx } = \frac{2n-1}{2a}</math></nowiki></code> yields
 
<code><nowiki><math>\frac{ \int_0^\infty x^{2n} e^{-a x^2}\,dx }{ \int_0^\infty x^{2(n-1)} e^{-a x^2}\,dx } = \frac{2n-1}{2a}</math></nowiki></code> yields
Line 284: Line 277:
 
:<math>\frac{ \int_0^\infty x^{2n} e^{-a x^2}\,dx }{ \int_0^\infty x^{2(n-1)} e^{-a x^2}\,dx } = \frac{2n-1}{2a}</math>
 
:<math>\frac{ \int_0^\infty x^{2n} e^{-a x^2}\,dx }{ \int_0^\infty x^{2(n-1)} e^{-a x^2}\,dx } = \frac{2n-1}{2a}</math>
  
'''HTML sandbox'''
+
'''Sandbox (without the <code>tiny</code> [fourth parameter] option):'''
  
 
<pre style="overflow: auto;">
 
<pre style="overflow: auto;">
Line 295: Line 288:
 
</pre>  
 
</pre>  
  
yields (should I create a <code>tint</code> option to get a tiny integral?)
+
yields ({{tl|bigmath}} should have <code>vertical-align: middle;</code>)  
  
 
:{{bigmath|<!--  
 
:{{bigmath|<!--  
Line 304: Line 297:
 
}}
 
}}
  
'''HTML sandbox (testing extra code for tiny integral)'''
+
'''Sandbox (with the <code>tiny</code> [fourth parameter] option):'''
  
 
<pre style="overflow: auto;">
 
<pre style="overflow: auto;">
:{{bigmath|
+
:{{bigmath|<!--  
<div style{{=}}"vertical-align: middle;"><!--  
 
 
-->{{sfrac
 
-->{{sfrac
   | <span style{{=}}"font-size: 0.75em; vertical-align: 0.3em;">{{intmath/sandbox|int|0|∞}}</span> ''x''<sup>2''n''</sup> ''e''<sup>&minus;''ax''<sup>2</sup></sup> ''dx''<!--  
+
   | {{intmath/sandbox|int|0|∞|tiny}} ''x''<sup>2''n''</sup> ''e''<sup>&minus;''ax''<sup>2</sup></sup> ''dx''<!--  
-->| <span style{{=}}"font-size: 0.75em; vertical-align: 0.3em;">{{intmath/sandbox|int|0|∞}}</span> ''x''<sup>2(''n''&minus;1)</sup>  ''e''<sup>&minus;''ax''<sup>2</sup></sup> ''dx''<!--  
+
-->| {{intmath/sandbox|int|0|∞|tiny}} ''x''<sup>2(''n''&minus;1)</sup>  ''e''<sup>&minus;''ax''<sup>2</sup></sup> ''dx''<!--  
-->}} {{=}} {{sfrac|2''n'' &minus; 1|2''a''}}
+
-->}} {{=}} {{sfrac|2''n'' &minus; 1|2''a''}}  
</div>
 
 
}}
 
}}
 
</pre>  
 
</pre>  
  
yields (should I create a <code>tint</code> option to get a tiny integral?) ({{tl|bigmath}} should have <code>vertical-align: middle;</code>)  
+
yields ({{tl|bigmath}} should have <code>vertical-align: middle;</code>)  
  
:{{bigmath|
+
:{{bigmath|<!--  
<div style{{=}}"vertical-align: middle;"><!--  
 
 
-->{{sfrac
 
-->{{sfrac
   | <span style{{=}}"font-size: 0.75em; vertical-align: 0.3em;">{{intmath/sandbox|int|0|∞}}</span> ''x''<sup>2''n''</sup> ''e''<sup>&minus;''ax''<sup>2</sup></sup> ''dx''<!--  
+
   | {{intmath/sandbox|int|0|∞|tiny}} ''x''<sup>2''n''</sup> ''e''<sup>&minus;''ax''<sup>2</sup></sup> ''dx''<!--  
-->| <span style{{=}}"font-size: 0.75em; vertical-align: 0.3em;">{{intmath/sandbox|int|0|∞}}</span> ''x''<sup>2(''n''&minus;1)</sup>  ''e''<sup>&minus;''ax''<sup>2</sup></sup> ''dx''<!--  
+
-->| {{intmath/sandbox|int|0|∞|tiny}} ''x''<sup>2(''n''&minus;1)</sup>  ''e''<sup>&minus;''ax''<sup>2</sup></sup> ''dx''<!--  
-->}} {{=}} {{sfrac|2''n'' &minus; 1|2''a''}}
+
-->}} {{=}} {{sfrac|2''n'' &minus; 1|2''a''}}  
</div>
 
 
}}
 
}}
  
'''HTML current'''
+
'''Current:'''
  
 
<pre style="overflow: auto;">
 
<pre style="overflow: auto;">
Line 346: Line 335:
 
-->| {{intmath|int|0|∞}} ''x''<sup>2(''n''&minus;1)</sup>  ''e''<sup>&minus;''ax''<sup>2</sup></sup> ''dx''<!--  
 
-->| {{intmath|int|0|∞}} ''x''<sup>2(''n''&minus;1)</sup>  ''e''<sup>&minus;''ax''<sup>2</sup></sup> ''dx''<!--  
 
-->}} {{=}} {{sfrac|2''n'' &minus; 1|2''a''}}  
 
-->}} {{=}} {{sfrac|2''n'' &minus; 1|2''a''}}  
 +
}}
 +
 +
'''Sandbox (without the <code>tiny</code> [fourth parameter] option):'''
 +
 +
<pre style="overflow: auto;">
 +
:{{bigmath|<!--
 +
-->{{sfrac
 +
  | {{intmath/sandbox|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S'''<!--
 +
-->| {{intmath/sandbox|iiint|&Omega;}} ''ρ'' ''dV''<!--
 +
-->}} {{=}} {{sfrac|1|''ε''<sub>0</sub>}}
 +
}}
 +
</pre>
 +
 +
yields ({{tl|bigmath}} should have <code>vertical-align: middle;</code>)
 +
 +
:{{bigmath|<!--
 +
-->{{sfrac
 +
  | {{intmath/sandbox|oiint|∂&Omega;}} '''E''' ∙ ''d'''''S'''<!--
 +
-->| {{intmath/sandbox|iiint|&Omega;}} ''ρ'' ''dV''<!--
 +
-->}} {{=}} {{sfrac|1|''ε''<sub>0</sub>}}
 +
}}
 +
 +
'''Sandbox (with the <code>tiny</code> [fourth parameter] option):'''
 +
 +
<pre style="overflow: auto;">
 +
:{{bigmath|<!--
 +
-->{{sfrac
 +
  | {{intmath/sandbox|oiint|∂&Omega;||tiny}} '''E''' ∙ ''d'''''S'''<!--
 +
-->| {{intmath/sandbox|iiint|&Omega;||tiny}} ''ρ'' ''dV''<!--
 +
-->}} {{=}} {{sfrac|1|''ε''<sub>0</sub>}}
 +
}}
 +
</pre>
 +
 +
yields ({{tl|bigmath}} should have <code>vertical-align: middle;</code>)
 +
 +
:{{bigmath|<!--
 +
-->{{sfrac
 +
  | {{intmath/sandbox|oiint|∂&Omega;||tiny}} '''E''' ∙ ''d'''''S'''<!--
 +
-->| {{intmath/sandbox|iiint|&Omega;||tiny}} ''ρ'' ''dV''<!--
 +
-->}} {{=}} {{sfrac|1|''ε''<sub>0</sub>}}
 
}}
 
}}

Latest revision as of 23:14, 28 July 2020

Script error: No such module "Purge".

Note: the {{intmath/sandbox}} code is tweaked and/or optimized for use inside the {{math}} and {{bigmath}} templates.

In IE, except for int, all the integrals seem to render in the beautiful font 'Lucida Sans Unicode', but in Firefox we get this ugly font (it is passable for text style, but would be really ugly in display style)! In which [ugly] font do the integral symbols, other than int, render? Also, in which font does int render? — TentaclesTalk or mailto:Tentacles 17:50, 22 March 2016 (UTC)

No {{math}}

Compare vertical alignment and obliqueness of [rotated] int with other [italic] integral symbols:




{{intmath/sandbox|int}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}}

Gamma function (non-italic int as default)

Sandbox: Γ(z) =
0
ettz − 1dt    (With the {{math}} template, the limits have a much better alignment with the integral symbol.)
Current: Γ(z) =
0
ettz − 1dt
Γ(''z'') = {{intmath||0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''

Gamma function

Sandbox: Γ(z) =
0
ettz − 1dt    (With the {{math}} template, the limits have a much better alignment with the integral symbol.)
Current: Γ(z) =
0
ettz − 1dt
Γ(''z'') = {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''

Line integral

Sandbox:
C
F(x) ∙ dx = −
C
F(x) ∙ dx
Current:
C
F(x) ∙ dx = −
C
F(x) ∙ dx
{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' = −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''

Maxwell's equations

Sandbox:

Gauss's law
∂Ω
EdS = Template:Sfrac
Ω
ρ dV
Gauss's law for magnetism
∂Ω
BdS = 0
Maxwell–Faraday equation
∂Σ
Ed = −
Σ
Template:SfracdS
Ampère's circuital law
∂Σ
Bd =
Σ
(μ0J + Template:SfracTemplate:Sfrac)dS

Current:

Gauss's law
∂Ω
EdS = Template:Sfrac
Ω
ρ dV
Gauss's law for magnetism
∂Ω
BdS = 0
Maxwell–Faraday equation
∂Σ
Ed = −
Σ
Template:SfracdS
Ampère's circuital law
∂Σ
Bd =
Σ
(μ0J + Template:SfracTemplate:Sfrac)dS
{{intmath|oiint|∂Ω}} '''E''' ∙ ''d'''''S''' = {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|Ω}} ''ρ'' ''dV''
{{intmath|oiint|∂Ω}} '''B''' ∙ ''d'''''S''' = 0
{{intmath|oint|∂Σ}} '''E''' ∙ ''d''<nowiki />'''''ℓ<!-- ℓ -->''''' = −{{intmath|iint|Σ}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''
{{intmath|oint|∂Σ}} '''B''' ∙ ''d''<nowiki />'''''ℓ<!-- ℓ -->''''' = {{intmath|iint|Σ}} {{big|(}} <!-- hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''

{{math}}

Compare vertical alignment and obliqueness of [rotated] int with other [italic] integral symbols:




{{math| {{intmath/sandbox|int}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}} }}

Gamma function (non-italic int as default)

Sandbox: Γ(z) =
0
ettz − 1dt
Current: Γ(z) =
0
ettz − 1dt
{{math|Γ(''z'') {{=}} {{intmath||0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''}}

Gamma function

Sandbox: Γ(z) =
0
ettz − 1dt
Current: Γ(z) =
0
ettz − 1dt
{{math|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''}}

Line integral

Sandbox:
C
F(x) ∙ dx = −
C
F(x) ∙ dx
Current:
C
F(x) ∙ dx = −
C
F(x) ∙ dx
{{math|{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' {{=}} −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''}}

Maxwell's equations

Sandbox:

Gauss's law
∂Ω
EdS = Template:Sfrac
Ω
ρ dV
Gauss's law for magnetism
∂Ω
BdS = 0
Maxwell–Faraday equation
∂Σ
Ed = −
Σ
Template:SfracdS
Ampère's circuital law
∂Σ
Bd =
Σ
(μ0J + Template:SfracTemplate:Sfrac)dS

Current:

Gauss's law
∂Ω
EdS = Template:Sfrac
Ω
ρ dV
Gauss's law for magnetism
∂Ω
BdS = 0
Maxwell–Faraday equation
∂Σ
Ed = −
Σ
Template:SfracdS
Ampère's circuital law
∂Σ
Bd =
Σ
(μ0J + Template:SfracTemplate:Sfrac)dS
{{math|{{intmath|oiint|∂Ω}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|Ω}} ''ρ'' ''dV''}}
{{math|{{intmath|oiint|∂Ω}} '''B''' ∙ ''d'''''S''' {{=}} 0}}
{{math|{{intmath|oint|∂Σ}} '''E''' ∙ ''d''<nowiki />'''''ℓ<!-- ℓ -->''''' {{=}} −{{intmath|iint|Σ}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}
{{math|{{intmath|oint|∂Σ}} '''B''' ∙ ''d''<nowiki />'''''ℓ<!-- ℓ -->''''' {{=}} {{intmath|iint|Σ}} {{big|(}} <!-- 1 hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}

Text style inline formulae

{{math}}

Sandbox: Line spacing is undisturbed.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Gauss's Law: ε0
∂Ω
EdS=
Ω
ρ dV.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Γ(z)=
0
ettz − 1dt.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Current: Messes up the line spacing.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Gauss's Law: ε0
∂Ω
EdS=
Ω
ρ dV.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Γ(z)=
0
ettz − 1dt.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Display style standalone formulae

{{bigmath}}

Compare vertical alignment and obliqueness of [rotated] int with other [italic] integral symbols:




{{Bigmath| {{intmath/sandbox|int}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|oiint}}&#x200A;<!-- 1 hair space -->{{intmath/sandbox|int}} }}

Gamma function

LaTeX:

The Gamma function is defined as

<math>\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} \, dt.</math>

Sandbox:

The Gamma function is defined as

Γ(z) =
0
ettz − 1dt.

Current:

The Gamma function is defined as

Γ(z) =
0
ettz − 1dt.
{{Bigmath|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>&#x200A;<!-- hair space -->''t''&#x200A;<!-- hair space --><sup>''z''&#x200A;<!-- hair space -->−&#x200A;<!-- hair space -->1</sup>''dt''.}}

Maxwell's equations

LaTeX:

Gauss's law:

Template:Oiint

Gauss's law for magnetism:

Template:Oiint

Maxwell–Faraday equation:

<math>\oint_{\partial \Sigma} \mathbf{E} \cdot d\boldsymbol{\ell} = - \iint_{\Sigma} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} </math>

Ampère's circuital law:

<math>\oint_{\partial \Sigma} \mathbf{B} \cdot d\boldsymbol{\ell} = \iint_{\Sigma} \left( \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} \right) \cdot d\mathbf{S} </math>

Sandbox:

Gauss's law:


∂Ω
EdS = Template:Sfrac
Ω
ρ dV

Gauss's law for magnetism:


∂Ω
BdS = 0

Maxwell–Faraday equation:


∂Σ
Ed = −
Σ
Template:SfracdS

Ampère's circuital law:


∂Σ
Bd =
Σ
(μ0J + Template:SfracTemplate:Sfrac)dS

Current:

Gauss's law:


∂Ω
EdS = Template:Sfrac
Ω
ρ dV

Gauss's law for magnetism:


∂Ω
BdS = 0

Maxwell–Faraday equation:


∂Σ
Ed = −
Σ
Template:SfracdS

Ampère's circuital law:


∂Σ
Bd =
Σ
(μ0J + Template:SfracTemplate:Sfrac)dS
Gauss's law: :{{Bigmath|{{intmath|oiint|∂Ω}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|Ω}} ''ρ'' ''dV''}}
Gauss's law for magnetism: :{{Bigmath|{{intmath|oiint|∂Ω}} '''B''' ∙ ''d'''''S''' {{=}} 0}}
Maxwell–Faraday equation: :{{Bigmath|{{intmath|oint|∂Σ}} '''E''' ∙ ''d''<nowiki />'''''ℓ<!-- ℓ -->''''' {{=}} −{{intmath|iint|Σ}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}
Ampère's circuital law: :{{Bigmath|{{intmath|oint|∂Σ}} '''B''' ∙ ''d''<nowiki />'''''ℓ<!-- ℓ -->''''' {{=}} {{intmath|iint|Σ}} {{big|(}} <!-- 1 hair space -->''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}{{big|)}} ∙ ''d'''''S'''}}

\iiiint and \idotsint

LaTeX:

<math>H {{=}} \iiiint_{\rm 4\mbox{-}ball} dH</math> yields

<math>H = \iiiint_{\rm 4\mbox{-}ball} dH</math>

<math>H {{=}} \idotsint_{n{\rm \mbox{-}ball}} dH</math> yields

<math>H = \idotsint_{n{\rm \mbox{-}ball}} dH</math>

<math>H {{=}} \int \cdots \int_{n{\rm \mbox{-}ball}} dH</math> yields

<math>H = \int \cdots \int_{n{\rm \mbox{-}ball}} dH</math>

<math>H {{=}} \int \!\cdots\! \int_{n{\rm \mbox{-}ball}} dH</math> yields (the better spaced)

<math>H = \int \!\cdots\! \int_{n{\rm \mbox{-}ball}} dH</math>

Sandbox:

{{math| H {{=}} {{intmath/sandbox|iiiint|4-ball}} ''dH'' }} yields the HTML text style H =
4-ball
dH

{{math| H {{=}} {{intmath/sandbox|idotsint|''n''-ball}} ''dH'' }} yields the HTML text style H =
  ⋯ 
n-ball
   dH

{{bigmath| H {{=}} {{intmath/sandbox|iiiint|4-ball}} ''dH'' }} yields the HTML display style

H =
4-ball
dH

{{bigmath| H {{=}} {{intmath/sandbox|idotsint|''n''-ball}} ''dH'' }} yields the HTML display style

H =
  ⋯ 
n-ball
   dH

Quotient of integrals

LaTeX:

<math>\frac{ \int_0^\infty x^{2n} e^{-a x^2}\,dx }{ \int_0^\infty x^{2(n-1)} e^{-a x^2}\,dx } = \frac{2n-1}{2a}</math> yields

<math>\frac{ \int_0^\infty x^{2n} e^{-a x^2}\,dx }{ \int_0^\infty x^{2(n-1)} e^{-a x^2}\,dx } = \frac{2n-1}{2a}</math>

Sandbox (without the tiny [fourth parameter] option):

:{{bigmath|<!-- 
-->{{sfrac
   | {{intmath/sandbox|int|0|∞}} ''x''<sup>2''n''</sup> ''e''<sup>−''ax''<sup>2</sup></sup> ''dx''<!-- 
-->| {{intmath/sandbox|int|0|∞}} ''x''<sup>2(''n''−1)</sup>  ''e''<sup>−''ax''<sup>2</sup></sup> ''dx''<!-- 
-->}} {{=}} {{sfrac|2''n'' − 1|2''a''}} 
}}

yields ({{bigmath}} should have vertical-align: middle;)

Template:Sfrac = Template:Sfrac

Sandbox (with the tiny [fourth parameter] option):

:{{bigmath|<!-- 
-->{{sfrac
   | {{intmath/sandbox|int|0|∞|tiny}} ''x''<sup>2''n''</sup> ''e''<sup>−''ax''<sup>2</sup></sup> ''dx''<!-- 
-->| {{intmath/sandbox|int|0|∞|tiny}} ''x''<sup>2(''n''−1)</sup>  ''e''<sup>−''ax''<sup>2</sup></sup> ''dx''<!-- 
-->}} {{=}} {{sfrac|2''n'' − 1|2''a''}} 
}}

yields ({{bigmath}} should have vertical-align: middle;)

Template:Sfrac = Template:Sfrac

Current:

:{{bigmath|<!-- 
-->{{sfrac
   | {{intmath|int|0|∞}} ''x''<sup>2''n''</sup> ''e''<sup>−''ax''<sup>2</sup></sup> ''dx''<!-- 
-->| {{intmath|int|0|∞}} ''x''<sup>2(''n''−1)</sup>  ''e''<sup>−''ax''<sup>2</sup></sup> ''dx''<!-- 
-->}} {{=}} {{sfrac|2''n'' − 1|2''a''}} 
}}

yields

Template:Sfrac = Template:Sfrac

Sandbox (without the tiny [fourth parameter] option):

:{{bigmath|<!-- 
-->{{sfrac
   | {{intmath/sandbox|oiint|∂Ω}} '''E''' ∙ ''d'''''S'''<!-- 
-->| {{intmath/sandbox|iiint|Ω}} ''ρ'' ''dV''<!-- 
-->}} {{=}} {{sfrac|1|''ε''<sub>0</sub>}} 
}}

yields ({{bigmath}} should have vertical-align: middle;)

Template:Sfrac = Template:Sfrac

Sandbox (with the tiny [fourth parameter] option):

:{{bigmath|<!-- 
-->{{sfrac
   | {{intmath/sandbox|oiint|∂Ω||tiny}} '''E''' ∙ ''d'''''S'''<!-- 
-->| {{intmath/sandbox|iiint|Ω||tiny}} ''ρ'' ''dV''<!-- 
-->}} {{=}} {{sfrac|1|''ε''<sub>0</sub>}} 
}}

yields ({{bigmath}} should have vertical-align: middle;)

Template:Sfrac = Template:Sfrac