Difference between revisions of "Template:Elastic moduli"
Jump to navigation
Jump to search
imported>Bbanerje (Slightly smaller font to fit the table into a smaller window.) |
imported>DASHBot m (Bot: Bypassing redirects in navboxes, in order to improve article navigability;details/shutoff) |
||
| Line 1: | Line 1: | ||
{{Navbox | {{Navbox | ||
| name = Elastic moduli | | name = Elastic moduli | ||
| − | | title = [[Elastic moduli]] for homogeneous [[isotropic]] materials | + | | title = [[Elastic modulus|Elastic moduli]] for homogeneous [[isotropic]] materials |
| list1 = [[Bulk modulus]] (<math>K</math>) • [[Young's modulus]] (<math>E</math>) • [[Lamé parameters|Lamé's first parameter]] (<math>\lambda</math>) • [[Shear modulus]] (<math>G</math>) • [[Poisson's ratio]] (<math>\nu</math>) • [[P-wave modulus]] (<math>M</math>) | | list1 = [[Bulk modulus]] (<math>K</math>) • [[Young's modulus]] (<math>E</math>) • [[Lamé parameters|Lamé's first parameter]] (<math>\lambda</math>) • [[Shear modulus]] (<math>G</math>) • [[Poisson's ratio]] (<math>\nu</math>) • [[P-wave modulus]] (<math>M</math>) | ||
| state = show | | state = show | ||
Revision as of 02:46, 2 June 2010
| Conversion formulas | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas. | ||||||||||
| <math>(\lambda,\,G)</math> | <math>(E,\,G)</math> | <math>(K,\,\lambda)</math> | <math>(K,\,G)</math> | <math>(\lambda,\,\nu)</math> | <math>(G,\,\nu)</math> | <math>(E,\,\nu)</math> | <math>(K,\, \nu)</math> | <math>(K,\,E)</math> | <math>(M,\,G)</math> | |
| <math>K=\,</math> | <math>\lambda+ \tfrac{2G}{3}</math> | <math>\tfrac{EG}{3(3G-E)}</math> | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> | <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> | <math>\tfrac{E}{3(1-2\nu)}</math> | <math>M - \tfrac{4G}{3}</math> | ||||
| <math>E=\, </math> | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> | <math>\tfrac{9KG}{3K+G}</math> | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> | <math>2G(1+\nu)\,</math> | <math>3K(1-2\nu)\,</math> | <math>\tfrac{G(3M-4G)}{M-G}</math> | |||
| <math>\lambda=\,</math> | <math>\tfrac{G(E-2G)}{3G-E}</math> | <math>K-\tfrac{2G}{3}</math> | <math>\tfrac{2 G \nu}{1-2\nu}</math> | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> | <math>\tfrac{3K\nu}{1+\nu}</math> | <math>\tfrac{3K(3K-E)}{9K-E}</math> | <math>M - 2G\,</math> | |||
| <math>G=\, </math> | <math>\tfrac{3(K-\lambda)}{2}</math> | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> | <math>\tfrac{E}{2(1+\nu)}</math> | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> | <math>\tfrac{3KE}{9K-E}</math> | |||||
| <math>\nu=\,</math> | <math>\tfrac{\lambda}{2(\lambda + G)}</math> | <math>\tfrac{E}{2G}-1</math> | <math>\tfrac{\lambda}{3K-\lambda}</math> | <math>\tfrac{3K-2G}{2(3K+G)}</math> | <math>\tfrac{3K-E}{6K}</math> | <math>\tfrac{M - 2G}{2M - 2G}</math> | ||||
| <math>M=\,</math> | <math>\lambda+2G\,</math> | <math>\tfrac{G(4G-E)}{3G-E}</math> | <math>3K-2\lambda\,</math> | <math>K+\tfrac{4G}{3}</math> | <math>\tfrac{\lambda(1-\nu)}{\nu}</math> | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> | <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> | <math>\tfrac{3K(1-\nu)}{1+\nu}</math> | <math>\tfrac{3K(3K+E)}{9K-E}</math> | |
The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.
References
- G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4
da:Skabelon:Parametre for materialers elasticitet eo:Ŝablono:Elastaj moduloj es:Plantilla:Módulo de elasticidad