Difference between revisions of "Template:Elastic moduli"

From blackwiki
Jump to navigation Jump to search
imported>YFdyh-bot
m (r2.7.2) (Robot: Adding zh:Template:弹性模量; modifying fr:Modèle:Modules élastiques)
imported>SuperNerd137
m
Line 24: Line 24:
 
|-
 
|-
 
| align=center | <math>K=\,</math>
 
| align=center | <math>K=\,</math>
|
+
| align=center | <math>K</math>
|
+
| align=center | <math>K</math>
|
+
| align=center | <math>K</math>
|
+
| align=center | <math>K</math>
 
| align=center | <math>\tfrac{EG}{3(3G-E)}</math>
 
| align=center | <math>\tfrac{EG}{3(3G-E)}</math>
 
| align=center | <math>\tfrac{E}{3(1-2\nu)}</math>
 
| align=center | <math>\tfrac{E}{3(1-2\nu)}</math>
Line 38: Line 38:
  
 
| align=center | <math>E=\, </math>
 
| align=center | <math>E=\, </math>
|
+
| align=center | <math>E</math>
 
| align=center | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math>
 
| align=center | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math>
 
| align=center | <math>\tfrac{9KG}{3K+G}</math>
 
| align=center | <math>\tfrac{9KG}{3K+G}</math>
 
| align=center | <math>3K(1-2\nu)\,</math>
 
| align=center | <math>3K(1-2\nu)\,</math>
|
+
| align=center | <math>E</math>
|
+
| align=center | <math>E</math>
 
| align=center | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math>
 
| align=center | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math>
 
| align=center | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math>
 
| align=center | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math>
Line 53: Line 53:
 
| align=center | <math>\lambda=\,</math>
 
| align=center | <math>\lambda=\,</math>
 
| align=center | <math>\tfrac{3K(3K-E)}{9K-E}</math>
 
| align=center | <math>\tfrac{3K(3K-E)}{9K-E}</math>
|
+
| align=center | <math>\lambda</math>
 
| align=center | <math>K-\tfrac{2G}{3}</math>
 
| align=center | <math>K-\tfrac{2G}{3}</math>
 
| align=center | <math>\tfrac{3K\nu}{1+\nu}</math>
 
| align=center | <math>\tfrac{3K\nu}{1+\nu}</math>
 
| align=center | <math>\tfrac{G(E-2G)}{3G-E}</math>
 
| align=center | <math>\tfrac{G(E-2G)}{3G-E}</math>
 
| align=center | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math>
 
| align=center | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math>
|
+
| align=center | <math>\lambda</math>
|
+
| align=center | <math>\lambda</math>
 
| align=center | <math>\tfrac{2 G \nu}{1-2\nu}</math>
 
| align=center | <math>\tfrac{2 G \nu}{1-2\nu}</math>
 
| align=center | <math>M - 2G\,</math>
 
| align=center | <math>M - 2G\,</math>
Line 68: Line 68:
 
| align=center | <math>\tfrac{3KE}{9K-E}</math>
 
| align=center | <math>\tfrac{3KE}{9K-E}</math>
 
| align=center | <math>\tfrac{3(K-\lambda)}{2}</math>
 
| align=center | <math>\tfrac{3(K-\lambda)}{2}</math>
|
+
| align=center | <math>G</math>
 
| align=center | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math>
 
| align=center | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math>
|
+
| align=center | <math>G</math>
 
| align=center | <math>\tfrac{E}{2(1+\nu)}</math>  
 
| align=center | <math>\tfrac{E}{2(1+\nu)}</math>  
|
+
| align=center | <math>G</math>
 
| align=center | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math>
 
| align=center | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math>
|
+
| align=center | <math>G</math>
|
+
| align=center | <math>G</math>
  
 
|-
 
|-
Line 83: Line 83:
 
| align=center | <math>\tfrac{\lambda}{3K-\lambda}</math>
 
| align=center | <math>\tfrac{\lambda}{3K-\lambda}</math>
 
| align=center | <math>\tfrac{3K-2G}{2(3K+G)}</math>
 
| align=center | <math>\tfrac{3K-2G}{2(3K+G)}</math>
|
+
| align=center | <math>\nu</math>
 
| align=center | <math>\tfrac{E}{2G}-1</math>
 
| align=center | <math>\tfrac{E}{2G}-1</math>
|
+
| align=center | <math>\nu</math>
 
| align=center | <math>\tfrac{\lambda}{2(\lambda + G)}</math>
 
| align=center | <math>\tfrac{\lambda}{2(\lambda + G)}</math>
|
+
| align=center | <math>\nu</math>
|
+
| align=center | <math>\nu</math>
 
| align=center | <math>\tfrac{M - 2G}{2M - 2G}</math>
 
| align=center | <math>\tfrac{M - 2G}{2M - 2G}</math>
  
Line 103: Line 103:
 
| align=center | <math>\tfrac{\lambda(1-\nu)}{\nu}</math>
 
| align=center | <math>\tfrac{\lambda(1-\nu)}{\nu}</math>
 
| align=center | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math>
 
| align=center | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math>
|
+
| align=center | <math>M</math>
 
|}<noinclude>
 
|}<noinclude>
  

Revision as of 06:28, 17 September 2012

Conversion formulas
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas.
<math>(K,\,E)</math> <math>(K,\,\lambda)</math> <math>(K,\,G)</math> <math>(K,\, \nu)</math> <math>(E,\,G)</math> <math>(E,\,\nu)</math> <math>(\lambda,\,G)</math> <math>(\lambda,\,\nu)</math> <math>(G,\,\nu)</math> <math>(G,\,M)</math>
<math>K=\,</math> <math>K</math> <math>K</math> <math>K</math> <math>K</math> <math>\tfrac{EG}{3(3G-E)}</math> <math>\tfrac{E}{3(1-2\nu)}</math> <math>\lambda+ \tfrac{2G}{3}</math> <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> <math>M - \tfrac{4G}{3}</math>
<math>E=\, </math> <math>E</math> <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> <math>\tfrac{9KG}{3K+G}</math> <math>3K(1-2\nu)\,</math> <math>E</math> <math>E</math> <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> <math>2G(1+\nu)\,</math> <math>\tfrac{G(3M-4G)}{M-G}</math>
<math>\lambda=\,</math> <math>\tfrac{3K(3K-E)}{9K-E}</math> <math>\lambda</math> <math>K-\tfrac{2G}{3}</math> <math>\tfrac{3K\nu}{1+\nu}</math> <math>\tfrac{G(E-2G)}{3G-E}</math> <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> <math>\lambda</math> <math>\lambda</math> <math>\tfrac{2 G \nu}{1-2\nu}</math> <math>M - 2G\,</math>
<math>G=\, </math> <math>\tfrac{3KE}{9K-E}</math> <math>\tfrac{3(K-\lambda)}{2}</math> <math>G</math> <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> <math>G</math> <math>\tfrac{E}{2(1+\nu)}</math> <math>G</math> <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> <math>G</math> <math>G</math>
<math>\nu=\,</math> <math>\tfrac{3K-E}{6K}</math> <math>\tfrac{\lambda}{3K-\lambda}</math> <math>\tfrac{3K-2G}{2(3K+G)}</math> <math>\nu</math> <math>\tfrac{E}{2G}-1</math> <math>\nu</math> <math>\tfrac{\lambda}{2(\lambda + G)}</math> <math>\nu</math> <math>\nu</math> <math>\tfrac{M - 2G}{2M - 2G}</math>
<math>M=\,</math> <math>\tfrac{3K(3K+E)}{9K-E}</math> <math>3K-2\lambda\,</math> <math>K+\tfrac{4G}{3}</math> <math>\tfrac{3K(1-\nu)}{1+\nu}</math> <math>\tfrac{G(4G-E)}{3G-E}</math> <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> <math>\lambda+2G\,</math> <math>\tfrac{\lambda(1-\nu)}{\nu}</math> <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> <math>M</math>

The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.


References

  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4

</include> da:Skabelon:Parametre for materialers elasticitet es:Plantilla:Módulo de elasticidad eo:Ŝablono:Elastaj moduloj fa:الگو:مدول‌های کشسانی fr:Modèle:Modules élastiques zh:Template:弹性模量