Difference between revisions of "Template:Elastic moduli"

From blackwiki
Jump to navigation Jump to search
imported>WOSlinker
(use listclass = hlist in navbox as per WP:HLIST)
imported>Addbot
m (Bot: Migrating 5 interwiki links, now provided by Wikidata on d:q11024927)
Line 120: Line 120:
 
[[Category:Physics templates]]
 
[[Category:Physics templates]]
  
[[da:Skabelon:Parametre for materialers elasticitet]]
 
[[es:Plantilla:Módulo de elasticidad]]
 
[[eo:Ŝablono:Elastaj moduloj]]
 
[[fa:الگو:مدول‌های کشسانی]]
 
 
[[fr:Modèle:Modules élastiques]]
 
[[fr:Modèle:Modules élastiques]]
[[zh:Template:弹性模量]]
 
 
</noinclude>
 
</noinclude>

Revision as of 06:55, 15 April 2013

Conversion formulas
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas.
<math>(K,\,E)</math> <math>(K,\,\lambda)</math> <math>(K,\,G)</math> <math>(K,\, \nu)</math> <math>(E,\,G)</math> <math>(E,\,\nu)</math> <math>(\lambda,\,G)</math> <math>(\lambda,\,\nu)</math> <math>(G,\,\nu)</math> <math>(G,\,M)</math>
<math>K=\,</math> <math>K</math> <math>K</math> <math>K</math> <math>K</math> <math>\tfrac{EG}{3(3G-E)}</math> <math>\tfrac{E}{3(1-2\nu)}</math> <math>\lambda+ \tfrac{2G}{3}</math> <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> <math>M - \tfrac{4G}{3}</math>
<math>E=\, </math> <math>E</math> <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> <math>\tfrac{9KG}{3K+G}</math> <math>3K(1-2\nu)\,</math> <math>E</math> <math>E</math> <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> <math>2G(1+\nu)\,</math> <math>\tfrac{G(3M-4G)}{M-G}</math>
<math>\lambda=\,</math> <math>\tfrac{3K(3K-E)}{9K-E}</math> <math>\lambda</math> <math>K-\tfrac{2G}{3}</math> <math>\tfrac{3K\nu}{1+\nu}</math> <math>\tfrac{G(E-2G)}{3G-E}</math> <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> <math>\lambda</math> <math>\lambda</math> <math>\tfrac{2 G \nu}{1-2\nu}</math> <math>M - 2G\,</math>
<math>G=\, </math> <math>\tfrac{3KE}{9K-E}</math> <math>\tfrac{3(K-\lambda)}{2}</math> <math>G</math> <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> <math>G</math> <math>\tfrac{E}{2(1+\nu)}</math> <math>G</math> <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> <math>G</math> <math>G</math>
<math>\nu=\,</math> <math>\tfrac{3K-E}{6K}</math> <math>\tfrac{\lambda}{3K-\lambda}</math> <math>\tfrac{3K-2G}{2(3K+G)}</math> <math>\nu</math> <math>\tfrac{E}{2G}-1</math> <math>\nu</math> <math>\tfrac{\lambda}{2(\lambda + G)}</math> <math>\nu</math> <math>\nu</math> <math>\tfrac{M - 2G}{2M - 2G}</math>
<math>M=\,</math> <math>\tfrac{3K(3K+E)}{9K-E}</math> <math>3K-2\lambda\,</math> <math>K+\tfrac{4G}{3}</math> <math>\tfrac{3K(1-\nu)}{1+\nu}</math> <math>\tfrac{G(4G-E)}{3G-E}</math> <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> <math>\lambda+2G\,</math> <math>\tfrac{\lambda(1-\nu)}{\nu}</math> <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> <math>M</math>

The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.

References

  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4

fr:Modèle:Modules élastiques