Difference between revisions of "Template:Elastic moduli"

From blackwiki
Jump to navigation Jump to search
imported>DanimothWiki
(Add formulas for the calculation of E, lamda, G, nu when K and M are given.)
imported>DanimothWiki
(Add formulas for the calculation of K, E, lamda, G when nu and M are given.)
Line 13: Line 13:
 
}}
 
}}
 
{| class="wikitable collapsible" width="100%" style="font-size:smaller; background:white" align=center
 
{| class="wikitable collapsible" width="100%" style="font-size:smaller; background:white" align=center
! colspan=12 | Conversion formulas
+
! colspan=13 | Conversion formulas
 
|-
 
|-
| colspan=12 | Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas.
+
| colspan=13 | Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas.
 
|-
 
|-
 
|
 
|
Line 29: Line 29:
 
| align=center | <math>(G,\,\nu)</math>
 
| align=center | <math>(G,\,\nu)</math>
 
| align=center | <math>(G,\,M)</math>
 
| align=center | <math>(G,\,M)</math>
 +
| align=center | <math>(\nu,\,M)</math>
  
 
|-
 
|-
Line 43: Line 44:
 
| align=center | <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math>
 
| align=center | <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math>
 
| align=center | <math>M - \tfrac{4G}{3}</math>
 
| align=center | <math>M - \tfrac{4G}{3}</math>
 +
| align=center | <math>\tfrac{M(1+\nu)}{3(1-\nu)}</math>
  
 
|-
 
|-
Line 58: Line 60:
 
| align=center | <math>2G(1+\nu)\,</math>
 
| align=center | <math>2G(1+\nu)\,</math>
 
| align=center | <math>\tfrac{G(3M-4G)}{M-G}</math>
 
| align=center | <math>\tfrac{G(3M-4G)}{M-G}</math>
 +
| align=center | <math>\tfrac{M(1+\nu)(1-2\nu)}{1-\nu}</math>
  
 
|-
 
|-
Line 73: Line 76:
 
| align=center | <math>\tfrac{2 G \nu}{1-2\nu}</math>
 
| align=center | <math>\tfrac{2 G \nu}{1-2\nu}</math>
 
| align=center | <math>M - 2G\,</math>
 
| align=center | <math>M - 2G\,</math>
 +
| align=center | <math>\tfrac{M \nu}{1-\nu}</math>
  
 
|-
 
|-
Line 88: Line 92:
 
| align=center | <math>G</math>
 
| align=center | <math>G</math>
 
| align=center | <math>G</math>
 
| align=center | <math>G</math>
 +
| align=center | <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math>
  
 
|-
 
|-
Line 103: Line 108:
 
| align=center | <math>\nu</math>
 
| align=center | <math>\nu</math>
 
| align=center | <math>\tfrac{M - 2G}{2M - 2G}</math>
 
| align=center | <math>\tfrac{M - 2G}{2M - 2G}</math>
 +
| align=center | <math>\nu</math>
  
 
|-
 
|-
Line 117: Line 123:
 
| align=center | <math>\tfrac{\lambda(1-\nu)}{\nu}</math>
 
| align=center | <math>\tfrac{\lambda(1-\nu)}{\nu}</math>
 
| align=center | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math>
 
| align=center | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math>
 +
| align=center | <math>M</math>
 
| align=center | <math>M</math>
 
| align=center | <math>M</math>
 
|}<noinclude>
 
|}<noinclude>

Revision as of 11:50, 18 May 2014

Conversion formulas
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas.
<math>(K,\,E)</math> <math>(K,\,\lambda)</math> <math>(K,\,G)</math> <math>(K,\,\nu)</math> <math>(K,\,M)</math> <math>(E,\,G)</math> <math>(E,\,\nu)</math> <math>(\lambda,\,G)</math> <math>(\lambda,\,\nu)</math> <math>(G,\,\nu)</math> <math>(G,\,M)</math> <math>(\nu,\,M)</math>
<math>K=\,</math> <math>K</math> <math>K</math> <math>K</math> <math>K</math> <math>K</math> <math>\tfrac{EG}{3(3G-E)}</math> <math>\tfrac{E}{3(1-2\nu)}</math> <math>\lambda+ \tfrac{2G}{3}</math> <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> <math>M - \tfrac{4G}{3}</math> <math>\tfrac{M(1+\nu)}{3(1-\nu)}</math>
<math>E=\, </math> <math>E</math> <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> <math>\tfrac{9KG}{3K+G}</math> <math>3K(1-2\nu)\,</math> <math>\tfrac{9K(M-K)}{3K+M}</math> <math>E</math> <math>E</math> <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> <math>2G(1+\nu)\,</math> <math>\tfrac{G(3M-4G)}{M-G}</math> <math>\tfrac{M(1+\nu)(1-2\nu)}{1-\nu}</math>
<math>\lambda=\,</math> <math>\tfrac{3K(3K-E)}{9K-E}</math> <math>\lambda</math> <math>K-\tfrac{2G}{3}</math> <math>\tfrac{3K\nu}{1+\nu}</math> <math>\tfrac{3K-M}{2}</math> <math>\tfrac{G(E-2G)}{3G-E}</math> <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> <math>\lambda</math> <math>\lambda</math> <math>\tfrac{2 G \nu}{1-2\nu}</math> <math>M - 2G\,</math> <math>\tfrac{M \nu}{1-\nu}</math>
<math>G=\, </math> <math>\tfrac{3KE}{9K-E}</math> <math>\tfrac{3(K-\lambda)}{2}</math> <math>G</math> <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> <math>\tfrac{3(M-K)}{4}</math> <math>G</math> <math>\tfrac{E}{2(1+\nu)}</math> <math>G</math> <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> <math>G</math> <math>G</math> <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math>
<math>\nu=\,</math> <math>\tfrac{3K-E}{6K}</math> <math>\tfrac{\lambda}{3K-\lambda}</math> <math>\tfrac{3K-2G}{2(3K+G)}</math> <math>\nu</math> <math>\tfrac{3K-M}{3K+M}</math> <math>\tfrac{E}{2G}-1</math> <math>\nu</math> <math>\tfrac{\lambda}{2(\lambda + G)}</math> <math>\nu</math> <math>\nu</math> <math>\tfrac{M - 2G}{2M - 2G}</math> <math>\nu</math>
<math>M=\,</math> <math>\tfrac{3K(3K+E)}{9K-E}</math> <math>3K-2\lambda\,</math> <math>K+\tfrac{4G}{3}</math> <math>\tfrac{3K(1-\nu)}{1+\nu}</math> <math>M</math> <math>\tfrac{G(4G-E)}{3G-E}</math> <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> <math>\lambda+2G\,</math> <math>\tfrac{\lambda(1-\nu)}{\nu}</math> <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> <math>M</math> <math>M</math>

The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.

References

  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4

fr:Modèle:Modules élastiques