Difference between revisions of "Template:Elastic moduli"

From blackwiki
Jump to navigation Jump to search
imported>DanimothWiki
(Add formulas for the calculation of K, E, lamda, G when nu and M are given.)
imported>DanimothWiki
(Add formulas for the calculation of K, E, G and nu when lambda and M are given.)
Line 13: Line 13:
 
}}
 
}}
 
{| class="wikitable collapsible" width="100%" style="font-size:smaller; background:white" align=center
 
{| class="wikitable collapsible" width="100%" style="font-size:smaller; background:white" align=center
! colspan=13 | Conversion formulas
+
! colspan=14 | Conversion formulas
 
|-
 
|-
| colspan=13 | Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas.
+
| colspan=14 | Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas.
 
|-
 
|-
 
|
 
|
Line 27: Line 27:
 
| align=center | <math>(\lambda,\,G)</math>
 
| align=center | <math>(\lambda,\,G)</math>
 
| align=center | <math>(\lambda,\,\nu)</math>
 
| align=center | <math>(\lambda,\,\nu)</math>
 +
| align=center | <math>(\lambda,\,M)</math>
 
| align=center | <math>(G,\,\nu)</math>
 
| align=center | <math>(G,\,\nu)</math>
 
| align=center | <math>(G,\,M)</math>
 
| align=center | <math>(G,\,M)</math>
Line 42: Line 43:
 
| align=center | <math>\lambda+ \tfrac{2G}{3}</math>
 
| align=center | <math>\lambda+ \tfrac{2G}{3}</math>
 
| align=center | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math>
 
| align=center | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math>
 +
| align=center | <math>\tfrac{M + 2\lambda}{3}</math>
 
| align=center | <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math>
 
| align=center | <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math>
 
| align=center | <math>M - \tfrac{4G}{3}</math>
 
| align=center | <math>M - \tfrac{4G}{3}</math>
Line 58: Line 60:
 
| align=center | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math>
 
| align=center | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math>
 
| align=center | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math>
 
| align=center | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math>
 +
| align=center | <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math>
 
| align=center | <math>2G(1+\nu)\,</math>
 
| align=center | <math>2G(1+\nu)\,</math>
 
| align=center | <math>\tfrac{G(3M-4G)}{M-G}</math>
 
| align=center | <math>\tfrac{G(3M-4G)}{M-G}</math>
Line 72: Line 75:
 
| align=center | <math>\tfrac{G(E-2G)}{3G-E}</math>
 
| align=center | <math>\tfrac{G(E-2G)}{3G-E}</math>
 
| align=center | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math>
 
| align=center | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math>
 +
| align=center | <math>\lambda</math>
 
| align=center | <math>\lambda</math>
 
| align=center | <math>\lambda</math>
 
| align=center | <math>\lambda</math>
 
| align=center | <math>\lambda</math>
Line 90: Line 94:
 
| align=center | <math>G</math>
 
| align=center | <math>G</math>
 
| align=center | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math>
 
| align=center | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math>
 +
| align=center | <math>\tfrac{M-\lambda}{2}</math>
 
| align=center | <math>G</math>
 
| align=center | <math>G</math>
 
| align=center | <math>G</math>
 
| align=center | <math>G</math>
Line 106: Line 111:
 
| align=center | <math>\tfrac{\lambda}{2(\lambda + G)}</math>
 
| align=center | <math>\tfrac{\lambda}{2(\lambda + G)}</math>
 
| align=center | <math>\nu</math>
 
| align=center | <math>\nu</math>
 +
| align=center | <math>\tfrac{\lambda}{M+\lambda}</math>
 
| align=center | <math>\nu</math>
 
| align=center | <math>\nu</math>
 
| align=center | <math>\tfrac{M - 2G}{2M - 2G}</math>
 
| align=center | <math>\tfrac{M - 2G}{2M - 2G}</math>
Line 122: Line 128:
 
| align=center | <math>\lambda+2G\,</math>
 
| align=center | <math>\lambda+2G\,</math>
 
| align=center | <math>\tfrac{\lambda(1-\nu)}{\nu}</math>
 
| align=center | <math>\tfrac{\lambda(1-\nu)}{\nu}</math>
 +
| align=center | <math>M</math>
 
| align=center | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math>
 
| align=center | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math>
 
| align=center | <math>M</math>
 
| align=center | <math>M</math>

Revision as of 13:06, 18 May 2014

Conversion formulas
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas.
<math>(K,\,E)</math> <math>(K,\,\lambda)</math> <math>(K,\,G)</math> <math>(K,\,\nu)</math> <math>(K,\,M)</math> <math>(E,\,G)</math> <math>(E,\,\nu)</math> <math>(\lambda,\,G)</math> <math>(\lambda,\,\nu)</math> <math>(\lambda,\,M)</math> <math>(G,\,\nu)</math> <math>(G,\,M)</math> <math>(\nu,\,M)</math>
<math>K=\,</math> <math>K</math> <math>K</math> <math>K</math> <math>K</math> <math>K</math> <math>\tfrac{EG}{3(3G-E)}</math> <math>\tfrac{E}{3(1-2\nu)}</math> <math>\lambda+ \tfrac{2G}{3}</math> <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> <math>\tfrac{M + 2\lambda}{3}</math> <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> <math>M - \tfrac{4G}{3}</math> <math>\tfrac{M(1+\nu)}{3(1-\nu)}</math>
<math>E=\, </math> <math>E</math> <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> <math>\tfrac{9KG}{3K+G}</math> <math>3K(1-2\nu)\,</math> <math>\tfrac{9K(M-K)}{3K+M}</math> <math>E</math> <math>E</math> <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math> <math>2G(1+\nu)\,</math> <math>\tfrac{G(3M-4G)}{M-G}</math> <math>\tfrac{M(1+\nu)(1-2\nu)}{1-\nu}</math>
<math>\lambda=\,</math> <math>\tfrac{3K(3K-E)}{9K-E}</math> <math>\lambda</math> <math>K-\tfrac{2G}{3}</math> <math>\tfrac{3K\nu}{1+\nu}</math> <math>\tfrac{3K-M}{2}</math> <math>\tfrac{G(E-2G)}{3G-E}</math> <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> <math>\lambda</math> <math>\lambda</math> <math>\lambda</math> <math>\tfrac{2 G \nu}{1-2\nu}</math> <math>M - 2G\,</math> <math>\tfrac{M \nu}{1-\nu}</math>
<math>G=\, </math> <math>\tfrac{3KE}{9K-E}</math> <math>\tfrac{3(K-\lambda)}{2}</math> <math>G</math> <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> <math>\tfrac{3(M-K)}{4}</math> <math>G</math> <math>\tfrac{E}{2(1+\nu)}</math> <math>G</math> <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> <math>\tfrac{M-\lambda}{2}</math> <math>G</math> <math>G</math> <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math>
<math>\nu=\,</math> <math>\tfrac{3K-E}{6K}</math> <math>\tfrac{\lambda}{3K-\lambda}</math> <math>\tfrac{3K-2G}{2(3K+G)}</math> <math>\nu</math> <math>\tfrac{3K-M}{3K+M}</math> <math>\tfrac{E}{2G}-1</math> <math>\nu</math> <math>\tfrac{\lambda}{2(\lambda + G)}</math> <math>\nu</math> <math>\tfrac{\lambda}{M+\lambda}</math> <math>\nu</math> <math>\tfrac{M - 2G}{2M - 2G}</math> <math>\nu</math>
<math>M=\,</math> <math>\tfrac{3K(3K+E)}{9K-E}</math> <math>3K-2\lambda\,</math> <math>K+\tfrac{4G}{3}</math> <math>\tfrac{3K(1-\nu)}{1+\nu}</math> <math>M</math> <math>\tfrac{G(4G-E)}{3G-E}</math> <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> <math>\lambda+2G\,</math> <math>\tfrac{\lambda(1-\nu)}{\nu}</math> <math>M</math> <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> <math>M</math> <math>M</math>

The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.

References

  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4

fr:Modèle:Modules élastiques