Difference between revisions of "Template:Geologic time scale"

From blackwiki
Jump to navigation Jump to search
imported>Tobias1984
(reverting IP edits until properly sourced edits are made)
Line 3: Line 3:
 
<div class="NavContent">
 
<div class="NavContent">
 
<!-- This next lines determine how wide the white section of the template should be, followed by the text size in the same part. They must be listed in percentage. -->
 
<!-- This next lines determine how wide the white section of the template should be, followed by the text size in the same part. They must be listed in percentage. -->
{| class="wikitable sortable" style="clear:both;margin:0; font-size:95%"
+
{| class="wikitable" style="clear:both;margin:0; font-size:95%"
 
|-
 
|-
 
! [[Supereon (geology)|Supereon]]
 
! [[Supereon (geology)|Supereon]]
 
! [[Eon (geology)|Eon]]
 
! [[Eon (geology)|Eon]]
 
! [[Era (geology)|Era]]
 
! [[Era (geology)|Era]]
! [[Period (geology)|Period]]<ref name="faunal-stages">Paleontologists often refer to [[faunal stage]]s rather than geologic (geological) periods.  The stage nomenclature is quite complex. For an excellent time-ordered list of faunal stages, see {{cite web| url=http://flatpebble.nceas.ucsb.edu/cgi-bin/bridge.pl?action=startScale| title=The Paleobiology Database| accessdate=2006-03-19}}</ref>
+
! [[Period (geology)|Period]]<ref name="faunal-stages">Paleontologists often refer to [[faunal stage]]s rather than geologic (geological) periods.  The stage nomenclature is quite complex. For an excellent time-ordered list of faunal stages, see {{cite web|url=http://flatpebble.nceas.ucsb.edu/cgi-bin/bridge.pl?action=startScale| title=The Paleobiology Database| accessdate=2006-03-19}}</ref>
 
! [[Epoch (geology)|Epoch]]
 
! [[Epoch (geology)|Epoch]]
 
! [[Age (geology)|Age]]<ref name="uncertain-dates" />
 
! [[Age (geology)|Age]]<ref name="uncertain-dates" />
Line 16: Line 16:
 
|rowspan="101" style="background:#ffffff"| n/a<ref>References to the "Post-Cambrian Supereon" are not universally accepted, and therefore must be considered unofficial.</ref>
 
|rowspan="101" style="background:#ffffff"| n/a<ref>References to the "Post-Cambrian Supereon" are not universally accepted, and therefore must be considered unofficial.</ref>
 
|rowspan="101" style="background:#b3e2d1"| [[Phanerozoic]]
 
|rowspan="101" style="background:#b3e2d1"| [[Phanerozoic]]
|rowspan="23" style="background:#ffff00"| [[Cenozoic]]<ref name="cenozoic-division">Historically, the [[Cenozoic]] has been divided up into the [[Quaternary]] and [[Tertiary]] sub-eras, as well as the [[Neogene]] and [[Paleogene]] periods. The [http://www.stratigraphy.org/upload/ISChart2009.pdf 2009 version of the ICS time chart] recognizes a slightly extended Quaternary as well as the Paleogene and a truncated Neogene, the Tertiary having been demoted to informal status.</ref>
+
|rowspan="23" style="background:#ffff00"| [[Cenozoic]]<ref name="cenozoic-division">Historically, the [[Cenozoic]] has been divided up into the [[Quaternary]] and [[Tertiary]] sub-eras, as well as the [[Neogene]] and [[Paleogene]] periods. The[http://www.stratigraphy.org/upload/ISChart2009.pdf 2009 version of the ICS time chart] recognizes a slightly extended Quaternary as well as the Paleogene and a truncated Neogene, the Tertiary having been demoted to informal status.</ref>
 
|-
 
|-
 
|rowspan="5" style="background:#ffff7f"| [[Quaternary]]
 
|rowspan="5" style="background:#ffff7f"| [[Quaternary]]
Line 22: Line 22:
 
|style="background:#FFF5EF"|  
 
|style="background:#FFF5EF"|  
 
[[Chronozone|chrons]]: [[Subatlantic|Subatlantic]]{{·}}[[Subboreal|Subboreal]]{{·}}[[Atlantic (period)|Atlantic]]{{·}}[[Boreal (period)|Boreal]]{{·}}[[Preboreal]]
 
[[Chronozone|chrons]]: [[Subatlantic|Subatlantic]]{{·}}[[Subboreal|Subboreal]]{{·}}[[Atlantic (period)|Atlantic]]{{·}}[[Boreal (period)|Boreal]]{{·}}[[Preboreal]]
|rowspan="1" | [[Quaternary glaciation|Quaternary Ice Age]] recedes, and the current [[interglacial]] begins; rise of human [[civilization]].  [[Sahara]] forms from savannah, and [[agriculture]] begins.  [[Stone Age]] cultures give way to [[Bronze Age]] (3300 BC) and [[Iron Age]] (1200 BC), giving rise to [[Synoptic table of the principal old world prehistoric cultures|many pre-historic cultures]] throughout the world. [[Little Ice Age]] ([[stadial]]) causes brief cooling in [[Northern Hemisphere]] from 1400 to 1850. Following the [[Industrial Revolution]], [[Earth's atmosphere|Atmospheric]] [[Carbon dioxide in the Earth's atmosphere|CO<sub>2</sub>]] levels rise from around 280 [[parts per million]] volume (ppmv) to the current level of 390 ppmv.<ref name="atmospheric-carbon-dioxide">For more information on this, see the following articles: [[Earth's atmosphere]], [[carbon dioxide]], [[Carbon dioxide in the Earth's atmosphere]], [[global warming]], [[climate change]], [[:Image:Phanerozoic_Carbon_Dioxide.png]], [[:Image:65 Myr Climate Change.png]], [[:Image:Five Myr Climate Change.png]]</ref>
+
|rowspan="1" | [[Quaternary glaciation|Quaternary Ice Age]] recedes, and the current [[interglacial]] begins; rise of human[[civilization]].  [[Sahara]] forms from savannah, and [[agriculture]] begins.  [[Stone Age]] cultures give way to [[Bronze Age]] (3300 BC) and [[Iron Age]] (1200 BC), giving rise to [[Synoptic table of the principal old world prehistoric cultures|many pre-historic cultures]]throughout the world. [[Little Ice Age]] ([[stadial]]) causes brief cooling in [[Northern Hemisphere]] from 1400 to 1850. Following the[[Industrial Revolution]], [[Earth's atmosphere|Atmospheric]] [[Carbon dioxide in the Earth's atmosphere|CO<sub>2</sub>]] levels rise from around 280 [[parts per million]] volume (ppmv) to the current level of 390 ppmv.<ref name="atmospheric-carbon-dioxide">For more information on this, see the following articles: [[Earth's atmosphere]], [[carbon dioxide]], [[Carbon dioxide in the Earth's atmosphere]], [[global warming]], [[climate change]], [[:Image:Phanerozoic_Carbon_Dioxide.png]], [[:Image:65 Myr Climate Change.png]], [[:Image:Five Myr Climate Change.png]]</ref>
 
|style="background:#ffffb3"| 0.0117<ref name="holocene">The start time for the [[Holocene]] epoch is here given as [[Upper Paleolithic|11,700]] [[before present|years ago]]. For further discussion of the dating of this epoch, see [[Holocene]].</ref>
 
|style="background:#ffffb3"| 0.0117<ref name="holocene">The start time for the [[Holocene]] epoch is here given as [[Upper Paleolithic|11,700]] [[before present|years ago]]. For further discussion of the dating of this epoch, see [[Holocene]].</ref>
 
|-
 
|-
 
|rowspan="4" style="background:#ffff62"| [[Pleistocene]]
 
|rowspan="4" style="background:#ffff62"| [[Pleistocene]]
 
| [[Late Pleistocene|Upper]] (locally [[Tarantian]]{{·}}[[Tyrrhenian Stage|Tyrrhenian]]{{·}}[[Eemian]]{{·}}[[Sangamonian Stage|Sangamonian]])
 
| [[Late Pleistocene|Upper]] (locally [[Tarantian]]{{·}}[[Tyrrhenian Stage|Tyrrhenian]]{{·}}[[Eemian]]{{·}}[[Sangamonian Stage|Sangamonian]])
|rowspan="4"| Flourishing and then extinction of many large [[mammal]]s ([[Pleistocene megafauna]]). Evolution of anatomically modern [[human]]s. [[Last glacial period|Quaternary Ice Age]] continues with [[glaciations]] and [[interstadial]]s (and the accompanying fluctuations from 100 to 300 ppmv in [[Earth's atmosphere|atmospheric]] CO<sub>2</sub> levels<ref name="atmospheric-carbon-dioxide" />), further intensification of [[Greenhouse and Icehouse Earth|Icehouse Earth]] conditions, roughly 1.6 [[Year#SI_prefix_multipliers|Ma]]. [[Last glacial maximum]] (30000 [[before present|years ago]]), [[last glacial period]] (18000&ndash;15000 years ago). Dawn of human [[Lower Paleolithic#Cultures|stone-age cultures]], with [[Middle Paleolithic#Cultures|increasing technical complexity]] relative to previous ice age cultures, such as [[Upper Paleolithic#Cultures|engravings and clay statues]] (e.g. [[Venus of Lespugue]]), particularly in the [[Mediterranean]] and Europe. [[Lake Toba]] [[supervolcano]] erupts 75000 years before present, causing a [[volcanic winter]] that [[Toba catastrophe theory|pushes humanity to the brink of extinction]].  Pleistocene ends with [[Oldest Dryas]], [[Older Dryas]]/[[Allerød Oscillation|Allerød]] and [[Younger Dryas]] climate events, with Younger Dryas forming the boundary with the Holocene.
+
|rowspan="4"| Flourishing and then extinction of many large [[mammal]]s ([[Pleistocene megafauna]]). Evolution of anatomically modern[[human]]s. [[Last glacial period|Quaternary Ice Age]] continues with [[glaciations]] and [[interstadial]]s (and the accompanying fluctuations from 100 to 300 ppmv in [[Earth's atmosphere|atmospheric]] CO<sub>2</sub> levels<ref name="atmospheric-carbon-dioxide" />), further intensification of [[Greenhouse and Icehouse Earth|Icehouse Earth]] conditions, roughly 1.6 [[Year#SI_prefix_multipliers|Ma]].[[Last glacial maximum]] (30000 [[before present|years ago]]), [[last glacial period]] (18000&ndash;15000 years ago). Dawn of human [[Lower Paleolithic#Cultures|stone-age cultures]], with [[Middle Paleolithic#Cultures|increasing technical complexity]] relative to previous ice age cultures, such as [[Upper Paleolithic#Cultures|engravings and clay statues]] (e.g. [[Venus of Lespugue]]), particularly in the[[Mediterranean]] and Europe. [[Lake Toba]] [[supervolcano]] erupts 75000 years before present, causing a [[volcanic winter]] that [[Toba catastrophe theory|pushes humanity to the brink of extinction]].  Pleistocene ends with [[Oldest Dryas]], [[Older Dryas]]/[[Allerød Oscillation|Allerød]] and [[Younger Dryas]] climate events, with Younger Dryas forming the boundary with the Holocene.
 
|style="background:#ffff62"| 0.126
 
|style="background:#ffff62"| 0.126
 
|-
 
|-
Line 50: Line 50:
 
|rowspan="6" style="background:#ffde00"| [[Miocene]]
 
|rowspan="6" style="background:#ffde00"| [[Miocene]]
 
| [[Messinian]]
 
| [[Messinian]]
|rowspan="6"| [[Greenhouse and Icehouse Earth|Moderate Icehouse climate]], puncuated by [[ice age]]s; [[Orogeny]] in [[northern hemisphere]]. Modern [[mammal]] and [[bird]] families become recognizable.  [[Equidae|Horses]] and [[mastodon]]s diverse. [[Grass]]es become ubiquitous. First [[ape]]s appear (for reference see the article: "[[Sahelanthropus tchadensis]]"). [[Kaikoura Orogeny]] forms [[Southern Alps]] in New Zealand, continues today. Orogeny of the Alps in Europe slows, but continues to this day. [[Carpathian orogeny]] forms [[Carpathian Mountains]] in [[Central Europe|Central]] and [[Eastern Europe]]. [[Hellenic orogeny]] in Greece and Aegean Sea slows, but continues to this day. [[Middle Miocene Disruption]] occurs. Widespread forests slowly [[photosynthesis|draw in]] massive amounts of CO<sub>2</sub>, gradually lowering the level of atmospheric CO<sub>2</sub> from 650 ppmv down to around 100 ppmv<ref name="atmospheric-carbon-dioxide" />.
+
|rowspan="6"| [[Greenhouse and Icehouse Earth|Moderate Icehouse climate]], puncuated by [[ice age]]s; [[Orogeny]] in [[northern hemisphere]]. Modern [[mammal]] and [[bird]] families become recognizable.  [[Equidae|Horses]] and [[mastodon]]s diverse. [[Grass]]es become ubiquitous. First [[ape]]s appear (for reference see the article: "[[Sahelanthropus tchadensis]]"). [[Kaikoura Orogeny]] forms[[Southern Alps]] in New Zealand, continues today. Orogeny of the Alps in Europe slows, but continues to this day. [[Carpathian orogeny]]forms [[Carpathian Mountains]] in [[Central Europe|Central]] and [[Eastern Europe]]. [[Hellenic orogeny]] in Greece and Aegean Sea slows, but continues to this day. [[Middle Miocene Disruption]] occurs. Widespread forests slowly [[photosynthesis|draw in]] massive amounts of CO<sub>2</sub>, gradually lowering the level of atmospheric CO<sub>2</sub> from 650 ppmv down to around 100 ppmv<ref name="atmospheric-carbon-dioxide" />.
 
|style="background:#ffde00"| 7.246<sup>*</sup>
 
|style="background:#ffde00"| 7.246<sup>*</sup>
 
|-
 
|-
Line 79: Line 79:
 
|rowspan="4" style="background:#eaad43"| [[Eocene]]
 
|rowspan="4" style="background:#eaad43"| [[Eocene]]
 
| [[Priabonian]]
 
| [[Priabonian]]
|rowspan="4"| [[Greenhouse and Icehouse Earth|Moderate, cooling climate]].  Archaic [[mammal]]s (e.g. [[Creodont]]s, [[Condylarth]]s, [[Uintatheriidae|Uintatheres]], etc) flourish and continue to develop during the epoch. Appearance of several "modern" mammal families. Primitive [[Cetacea|whales]] diversify.  First [[grass]]es. Reglaciation of Antarctica and formation of its [[ice cap]]; [[Azolla event]] triggers [[ice age]], and the [[Greenhouse and Icehouse Earth|Icehouse Earth]] climate that would follow it to this day, from the settlement and decay of [[seafloor]] [[algae]] drawing in massive amounts of atmospheric [[carbon dioxide]]<ref name="atmospheric-carbon-dioxide" />, lowering it from 3800 [[parts per million|ppmv]] down to 650 ppmv. End of [[Laramide Orogeny|Laramide]] and [[Sevier orogeny|Sevier Orogenies]] of the [[Rocky Mountains]] in North America. [[Orogeny]] of the [[Alps]] in Europe begins. [[Hellenic Orogeny]] begins in Greece and [[Aegean Sea]].
+
|rowspan="4"| [[Greenhouse and Icehouse Earth|Moderate, cooling climate]].  Archaic [[mammal]]s (e.g. [[Creodont]]s, [[Condylarth]]s,[[Uintatheriidae|Uintatheres]], etc) flourish and continue to develop during the epoch. Appearance of several "modern" mammal families. Primitive [[Cetacea|whales]] diversify.  First [[grass]]es. Reglaciation of Antarctica and formation of its [[ice cap]]; [[Azolla event]]triggers [[ice age]], and the [[Greenhouse and Icehouse Earth|Icehouse Earth]] climate that would follow it to this day, from the settlement and decay of [[seafloor]] [[algae]] drawing in massive amounts of atmospheric [[carbon dioxide]]<ref name="atmospheric-carbon-dioxide" />, lowering it from 3800 [[parts per million|ppmv]] down to 650 ppmv. End of [[Laramide Orogeny|Laramide]] and [[Sevier orogeny|Sevier Orogenies]] of the [[Rocky Mountains]] in North America. [[Orogeny]] of the [[Alps]] in Europe begins. [[Hellenic Orogeny]] begins in Greece and [[Aegean Sea]].
 
|style="background:#eaad43"| 38.0
 
|style="background:#eaad43"| 38.0
 
|-
 
|-
Line 93: Line 93:
 
|rowspan="3" style="background:#eb9301"| [[Paleocene]]
 
|rowspan="3" style="background:#eb9301"| [[Paleocene]]
 
| [[Thanetian]]
 
| [[Thanetian]]
|rowspan="3"| [[Greenhouse and Icehouse Earth|Climate tropical]].  Modern [[plant]]s appear; [[Mammal]]s diversify into a number of primitive lineages following the extinction of the dinosaurs.  First large mammals (up to [[bear]] or small [[hippopotamus|hippo]] size). [[Alpine orogeny]] in Europe and Asia begins. [[Indian Subcontinent]] collides with Asia 55 [[Year#SI_prefix_multipliers|Ma]], [[Geology of the Himalaya|Himalayan Orogeny]] starts between 52 and 48 [[Year#SI_prefix_multipliers|Ma]].
+
|rowspan="3"| [[Greenhouse and Icehouse Earth|Climate tropical]].  Modern [[plant]]s appear; [[Mammal]]s diversify into a number of primitive lineages following the extinction of the dinosaurs.  First large mammals (up to [[bear]] or small [[hippopotamus|hippo]] size).[[Alpine orogeny]] in Europe and Asia begins. [[Indian Subcontinent]] collides with Asia 55 [[Year#SI_prefix_multipliers|Ma]], [[Geology of the Himalaya|Himalayan Orogeny]] starts between 52 and 48 [[Year#SI_prefix_multipliers|Ma]].
 
|style="background:#eb9301"| 59.2<sup>*</sup>
 
|style="background:#eb9301"| 59.2<sup>*</sup>
 
|-
 
|-
Line 106: Line 106:
 
|rowspan="6" style="background:#def197"| [[Late Cretaceous|Upper]]
 
|rowspan="6" style="background:#def197"| [[Late Cretaceous|Upper]]
 
| [[Maastrichtian]]
 
| [[Maastrichtian]]
|rowspan="12"| [[Flowering plant]]s proliferate, along with new types of [[insect]]s. More modern [[teleost]] fish begin to appear. [[Ammonoidea]], [[Belemnoidea|belemnites]], [[rudist]] [[Bivalvia|bivalve]]s, [[Echinoidea|echinoid]]s and [[Porifera|sponges]] all common. Many new types of [[dinosaur]]s (e.g. [[Tyrannosauridae|Tyrannosaurs]], [[Titanosauridae|Titanosaurs]], [[Hadrosauridae|duck bills]], and [[Ceratopsidae|horned dinosaurs]]) evolve on land, as do [[Eusuchia]] ([[Crocodilia|modern crocodilians]]); and [[mosasaur]]s and modern [[shark]]s appear in the sea. Primitive [[bird]]s gradually replace [[pterosaurs]]. [[Monotremes]], [[marsupial]]s and [[Eutheria|placental]] mammals appear. Break up of [[Gondwana]]. Beginning of [[Laramide Orogeny|Laramide]] and [[Sevier Orogeny|Sevier Orogenies]] of the [[Rocky Mountains]]. [[Earth's atmosphere|Atmospheric]] CO<sub>2</sub> close to present-day levels.
+
|rowspan="12"| [[Flowering plant]]s proliferate, along with new types of [[insect]]s. More modern [[teleost]] fish begin to appear.[[Ammonoidea]], [[Belemnoidea|belemnites]], [[rudist]] [[Bivalvia|bivalve]]s, [[Echinoidea|echinoid]]s and [[Porifera|sponges]] all common. Many new types of [[dinosaur]]s (e.g. [[Tyrannosauridae|Tyrannosaurs]], [[Titanosauridae|Titanosaurs]], [[Hadrosauridae|duck bills]], and[[Ceratopsidae|horned dinosaurs]]) evolve on land, as do [[Eusuchia]] ([[Crocodilia|modern crocodilians]]); and [[mosasaur]]s and modern[[shark]]s appear in the sea. Primitive [[bird]]s gradually replace [[pterosaurs]]. [[Monotremes]], [[marsupial]]s and[[Eutheria|placental]] mammals appear. Break up of [[Gondwana]]. Beginning of [[Laramide Orogeny|Laramide]] and [[Sevier Orogeny|Sevier Orogenies]] of the [[Rocky Mountains]]. [[Earth's atmosphere|Atmospheric]] CO<sub>2</sub> close to present-day levels.
 
|style="background:#def197"| 72.1 ±&nbsp;0.2<sup>*</sup>
 
|style="background:#def197"| 72.1 ±&nbsp;0.2<sup>*</sup>
 
|-
 
|-
Line 146: Line 146:
 
|rowspan="3" style="background:#ccebc5"| [[Late Jurassic|Upper]]
 
|rowspan="3" style="background:#ccebc5"| [[Late Jurassic|Upper]]
 
| [[Tithonian]]
 
| [[Tithonian]]
|rowspan="11"| [[Gymnosperm]]s (especially [[conifer]]s, [[Bennettitales]] and [[cycad]]s) and [[fern]]s common. Many types of [[dinosaur]]s, such as [[sauropod]]s, [[carnosaur]]s, and [[stegosaur]]s. Mammals common but small. First [[bird]]s and [[Squamata|lizards]]. [[Ichthyosaur]]s and [[plesiosaur]]s diverse. [[Bivalvia|Bivalve]]s, [[Ammonite]]s and [[Belemnoidea|belemnites]] abundant. [[Sea urchin]]s very common, along with [[crinoid]]s, starfish, [[Porifera|sponges]], and [[Terebratulida|terebratulid]] and [[Rhynchonellida|rhynchonellid]] [[brachiopod]]s. Breakup of [[Pangaea]] into [[Gondwana]] and [[Laurasia]]. [[Nevadan orogeny]] in North America. [[Rangitata Orogeny|Rantigata]] and [[Cimmerian Orogeny|Cimmerian Orogenies]] taper off. Atmospheric CO<sub>2</sub> levels 4&ndash;5 times the present day levels (1200&ndash;1500 ppmv, compared to today's 385 ppmv<ref name="atmospheric-carbon-dioxide" />).
+
|rowspan="11"| [[Gymnosperm]]s (especially [[conifer]]s, [[Bennettitales]] and [[cycad]]s) and [[fern]]s common. Many types of[[dinosaur]]s, such as [[sauropod]]s, [[carnosaur]]s, and [[stegosaur]]s. Mammals common but small. First [[bird]]s and[[Squamata|lizards]]. [[Ichthyosaur]]s and [[plesiosaur]]s diverse. [[Bivalvia|Bivalve]]s, [[Ammonite]]s and [[Belemnoidea|belemnites]]abundant. [[Sea urchin]]s very common, along with [[crinoid]]s, starfish, [[Porifera|sponges]], and [[Terebratulida|terebratulid]] and[[Rhynchonellida|rhynchonellid]] [[brachiopod]]s. Breakup of [[Pangaea]] into [[Gondwana]] and [[Laurasia]]. [[Nevadan orogeny]] in North America. [[Rangitata Orogeny|Rantigata]] and [[Cimmerian Orogeny|Cimmerian Orogenies]] taper off. Atmospheric CO<sub>2</sub> levels 4&ndash;5 times the present day levels (1200&ndash;1500 ppmv, compared to today's 385 ppmv<ref name="atmospheric-carbon-dioxide" />).
 
|style="background:#ccebc5"| 152.1 ±&nbsp;0.9
 
|style="background:#ccebc5"| 152.1 ±&nbsp;0.9
 
|-
 
|-
Line 184: Line 184:
 
|rowspan="3" style="background:#ccece1"| [[Late Triassic|Upper]]
 
|rowspan="3" style="background:#ccece1"| [[Late Triassic|Upper]]
 
| [[Rhaetian]]
 
| [[Rhaetian]]
|rowspan="7"| [[Archosaur]]s dominant on land as [[dinosaur]]s, in the oceans as [[Ichthyosaur]]s and [[nothosaur]]s, and in the air as [[pterosaur]]s. [[Cynodont]]s become smaller and more mammal-like, while first [[mammal]]s and [[crocodilia]] appear. ''[[Dicroidium]]'' flora common on land. Many large aquatic [[temnospondyli|temnospondyl]] amphibians. [[Ammonite|Ceratitic ammonoids]] extremely common. [[Scleractinia|Modern corals]] and [[teleost]] fish appear, as do many modern [[insect]] clades. [[Andes Mountains|Andean Orogeny]] in South America. [[Cimmerian Orogeny]] in Asia. [[Rangitata Orogeny]] begins in New Zealand. [[Hunter-Bowen Orogeny]] in [[Northern Australia]], Queensland and [[New South Wales]] ends, (c. 260&ndash;225 [[Year#SI_prefix_multipliers|Ma]])
+
|rowspan="7"| [[Archosaur]]s dominant on land as [[dinosaur]]s, in the oceans as [[Ichthyosaur]]s and [[nothosaur]]s, and in the air as[[pterosaur]]s. [[Cynodont]]s become smaller and more mammal-like, while first [[mammal]]s and [[crocodilia]] appear. ''[[Dicroidium]]''flora common on land. Many large aquatic [[temnospondyli|temnospondyl]] amphibians. [[Ammonite|Ceratitic ammonoids]] extremely common.[[Scleractinia|Modern corals]] and [[teleost]] fish appear, as do many modern [[insect]] clades. [[Andes Mountains|Andean Orogeny]] in South America. [[Cimmerian Orogeny]] in Asia. [[Rangitata Orogeny]] begins in New Zealand. [[Hunter-Bowen Orogeny]] in [[Northern Australia]], Queensland and [[New South Wales]] ends, (c. 260&ndash;225 [[Year#SI_prefix_multipliers|Ma]])
 
|style="background:#ccece1"| c. 208.5
 
|style="background:#ccece1"| c. 208.5
 
|-
 
|-
Line 211: Line 211:
 
|rowspan="2" style="background:#b3e3ee"| [[Lopingian]]
 
|rowspan="2" style="background:#b3e3ee"| [[Lopingian]]
 
| [[Changhsingian]]
 
| [[Changhsingian]]
|rowspan="9"| [[Landmass]]es unite into [[supercontinent]] [[Pangaea]], creating the [[Appalachian Mountains|Appalachian]]s. End of Permo-Carboniferous glaciation. [[Synapsida|Synapsid]] [[Reptilia|reptile]]s ([[pelycosaur]]s and [[therapsid]]s) become plentiful, while [[parareptile]]s and [[temnospondyli|temnospondyl]] [[Amphibian|amphibians]] remain common. In the mid-Permian, [[coal]]-age flora are replaced by [[Conifer cone|cone]]-bearing [[gymnosperm]]s (the first true [[seed plants]]) and by the first true [[moss]]es. [[Beetles]] and [[Fly|flies]] evolve. Marine life flourishes in warm shallow reefs; [[Productida|productid]] and [[Spiriferida|spiriferid]] brachiopods, bivalves, [[foraminifera|foram]]s, and [[orthocerid|ammonoid]]s all abundant. [[Permian-Triassic extinction event]] occurs 251 [[Year#SI_prefix_multipliers|Ma]]: 95% of life on Earth becomes extinct, including all [[trilobite]]s, [[graptolite]]s, and [[blastoid]]s. [[Ouachita Orogeny|Ouachita]] and [[Innuitian orogeny|Innuitian orogenies]] in North America. [[Uralian orogeny]] in Europe/Asia tapers off. [[Altai Mountains|Altaid]] orogeny in Asia. [[Hunter-Bowen Orogeny]] on [[Australia (Continent)|Australian Continent]] begins (c. 260&ndash;225 [[Year#SI_prefix_multipliers|Ma]]), forming the [[MacDonnell Ranges]].
+
|rowspan="9"| [[Landmass]]es unite into [[supercontinent]] [[Pangaea]], creating the [[Appalachian Mountains|Appalachian]]s. End of Permo-Carboniferous glaciation. [[Synapsida|Synapsid]] [[Reptilia|reptile]]s ([[pelycosaur]]s and [[therapsid]]s) become plentiful, while[[parareptile]]s and [[temnospondyli|temnospondyl]] [[Amphibian|amphibians]] remain common. In the mid-Permian, [[coal]]-age flora are replaced by [[Conifer cone|cone]]-bearing [[gymnosperm]]s (the first true [[seed plants]]) and by the first true [[moss]]es. [[Beetles]]and [[Fly|flies]] evolve. Marine life flourishes in warm shallow reefs; [[Productida|productid]] and [[Spiriferida|spiriferid]]brachiopods, bivalves, [[foraminifera|foram]]s, and [[orthocerid|ammonoid]]s all abundant. [[Permian-Triassic extinction event]] occurs 251[[Year#SI_prefix_multipliers|Ma]]: 95% of life on Earth becomes extinct, including all [[trilobite]]s, [[graptolite]]s, and [[blastoid]]s.[[Ouachita Orogeny|Ouachita]] and [[Innuitian orogeny|Innuitian orogenies]] in North America. [[Uralian orogeny]] in Europe/Asia tapers off. [[Altai Mountains|Altaid]] orogeny in Asia. [[Hunter-Bowen Orogeny]] on [[Australia (Continent)|Australian Continent]] begins (c. 260&ndash;225 [[Year#SI_prefix_multipliers|Ma]]), forming the [[MacDonnell Ranges]].
 
|style="background:#b3e3ee"| 254.2 ±&nbsp;0.1<sup>*</sup>
 
|style="background:#b3e3ee"| 254.2 ±&nbsp;0.1<sup>*</sup>
 
|-
 
|-
Line 243: Line 243:
 
|rowspan="2" style="background:#689fca"| [[Late Pennsylvanian|Upper]]
 
|rowspan="2" style="background:#689fca"| [[Late Pennsylvanian|Upper]]
 
| [[Gzhelian]]
 
| [[Gzhelian]]
|rowspan="4"| [[Pterygota|Winged insects]] radiate suddenly; some (esp. [[Protodonata]] and [[Palaeodictyoptera]]) are quite large. [[Amphibian]]s common and diverse. First [[reptile]]s and [[coal]] forests ([[Lepidodendron|scale tree]]s, ferns, [[Sigillaria|club tree]]s, [[Calamites|giant horsetail]]s, ''[[Cordaites]]'', etc.). Highest-ever [[Earth's atmosphere|atmospheric]] [[oxygen]] levels. [[Goniatite]]s, brachiopods, bryozoa, bivalves, and corals plentiful in the seas and oceans. Testate [[foram]]s proliferate. [[Uralian orogeny]] in Europe and Asia. [[Variscan orogeny]] occurs towards middle and late Mississippian Periods.
+
|rowspan="4"| [[Pterygota|Winged insects]] radiate suddenly; some (esp. [[Protodonata]] and [[Palaeodictyoptera]]) are quite large.[[Amphibian]]s common and diverse. First [[reptile]]s and [[coal]] forests ([[Lepidodendron|scale tree]]s, ferns, [[Sigillaria|club tree]]s, [[Calamites|giant horsetail]]s, ''[[Cordaites]]'', etc.). Highest-ever [[Earth's atmosphere|atmospheric]] [[oxygen]] levels.[[Goniatite]]s, brachiopods, bryozoa, bivalves, and corals plentiful in the seas and oceans. Testate [[foram]]s proliferate. [[Uralian orogeny]] in Europe and Asia. [[Variscan orogeny]] occurs towards middle and late Mississippian Periods.
 
|style="background:#689fca"| 303.7 ±&nbsp;0.1
 
|style="background:#689fca"| 303.7 ±&nbsp;0.1
 
|-
 
|-
Line 260: Line 260:
 
|style="background:#8091ad"| [[Late Mississippian|Upper]]
 
|style="background:#8091ad"| [[Late Mississippian|Upper]]
 
| [[Serpukhovian]]
 
| [[Serpukhovian]]
|rowspan="3"| Large [[Lycopodiophyta|primitive tree]]s, first [[Tetrapoda|land vertebrate]]s, and amphibious [[eurypterid|sea-scorpion]]s live amid [[coal]]-forming coastal [[brackish water|swamp]]s. Lobe-finned [[rhizodont]]s are dominant big fresh-water predators. In the oceans, early [[Chondrichthyes|shark]]s are common and quite diverse; [[echinoderm]]s (especially [[crinoid]]s and [[blastoid]]s) abundant. [[Coral]]s, [[bryozoa]], [[Goniatitida|goniatite]]s and brachiopods ([[Productida]], [[Spiriferida]], etc.) very common, but [[Trilobita|trilobite]]s and [[nautiloid]]s decline. [[Glaciation]] in East [[Gondwana]]. [[Mayor Island/Tuhua|Tuhua Orogeny]] in New Zealand tapers off.
+
|rowspan="3"| Large [[Lycopodiophyta|primitive tree]]s, first [[Tetrapoda|land vertebrate]]s, and amphibious [[eurypterid|sea-scorpion]]s live amid [[coal]]-forming coastal [[brackish water|swamp]]s. Lobe-finned [[rhizodont]]s are dominant big fresh-water predators. In the oceans, early [[Chondrichthyes|shark]]s are common and quite diverse; [[echinoderm]]s (especially [[crinoid]]s and [[blastoid]]s) abundant.[[Coral]]s, [[bryozoa]], [[Goniatitida|goniatite]]s and brachiopods ([[Productida]], [[Spiriferida]], etc.) very common, but[[Trilobita|trilobite]]s and [[nautiloid]]s decline. [[Glaciation]] in East [[Gondwana]]. [[Mayor Island/Tuhua|Tuhua Orogeny]] in New Zealand tapers off.
 
|style="background:#8091ad"| 330.9 ±&nbsp;0.2
 
|style="background:#8091ad"| 330.9 ±&nbsp;0.2
 
|-
 
|-
Line 274: Line 274:
 
|rowspan="2" style="background:#cbbddc"| [[Late Devonian|Upper]]
 
|rowspan="2" style="background:#cbbddc"| [[Late Devonian|Upper]]
 
| [[Famennian]]
 
| [[Famennian]]
|rowspan="7"| First [[Lycopodiopsida|clubmoss]]es, [[Equisetophyta|horsetail]]s and [[fern]]s appear, as do the first [[seed]]-bearing plants ([[progymnosperm]]s), first [[tree]]s (the progymnosperm ''[[Archaeopteris]]''), and first (wingless) [[Insecta|insect]]s. [[Strophomenida|Strophomenid]] and [[Atrypida|atrypid]] [[brachiopod]]s, [[Rugosa|rugose]] and [[Tabulata|tabulate]] corals, and [[crinoid]]s are all abundant in the oceans. [[Goniatite]] [[Ammonite|ammonoids]] are plentiful, while squid-like [[Coleoidea|coleoids]] arise. Trilobites and armoured agnaths decline, while jawed fishes ([[Placodermi|placoderm]]s, [[Sarcopterygii|lobe-finned]] and [[Osteichthyes|ray-finned]] fish, and early [[Chondrichthyes|sharks]]) rule the seas. First [[amphibian]]s still aquatic. "Old Red Continent" of [[Euramerica]]. Beginning of [[Acadian Orogeny]] for [[Atlas Mountains|Anti-Atlas Mountains]] of [[North Africa]], and [[Appalachian Mountains]] of North America, also the [[Antler Orogeny|Antler]], [[Variscan Orogeny|Variscan]], and [[Mayor Island/Tuhua|Tuhua Orogeny]] in New Zealand.
+
|rowspan="7"| First [[Lycopodiopsida|clubmoss]]es, [[Equisetophyta|horsetail]]s and [[fern]]s appear, as do the first [[seed]]-bearing plants ([[progymnosperm]]s), first [[tree]]s (the progymnosperm ''[[Archaeopteris]]''), and first (wingless) [[Insecta|insect]]s.[[Strophomenida|Strophomenid]] and [[Atrypida|atrypid]] [[brachiopod]]s, [[Rugosa|rugose]] and [[Tabulata|tabulate]] corals, and[[crinoid]]s are all abundant in the oceans. [[Goniatite]] [[Ammonite|ammonoids]] are plentiful, while squid-like [[Coleoidea|coleoids]]arise. Trilobites and armoured agnaths decline, while jawed fishes ([[Placodermi|placoderm]]s, [[Sarcopterygii|lobe-finned]] and[[Osteichthyes|ray-finned]] fish, and early [[Chondrichthyes|sharks]]) rule the seas. First [[amphibian]]s still aquatic. "Old Red Continent" of [[Euramerica]]. Beginning of [[Acadian Orogeny]] for [[Atlas Mountains|Anti-Atlas Mountains]] of [[North Africa]], and[[Appalachian Mountains]] of North America, also the [[Antler Orogeny|Antler]], [[Variscan Orogeny|Variscan]], and [[Mayor Island/Tuhua|Tuhua Orogeny]] in New Zealand.
 
|style="background:#cbbddc"| 372.2 ±&nbsp;1.6<sup>*</sup>
 
|style="background:#cbbddc"| 372.2 ±&nbsp;1.6<sup>*</sup>
 
|-
 
|-
Line 299: Line 299:
 
|rowspan="8" style="background:#b172b6"| [[Silurian]]
 
|rowspan="8" style="background:#b172b6"| [[Silurian]]
 
|style="background:#e9c7e2"| [[Pridoli epoch|Pridoli]]
 
|style="background:#e9c7e2"| [[Pridoli epoch|Pridoli]]
| ''no faunal stages defined'' (Stage 8)
+
| ''no faunal stages defined''
|rowspan="8"| First [[Vascular plant]]s (the [[rhyniophytes]] and their relatives), first [[millipede]]s and [[Arthropleurida|arthropleurid]]s on land. First [[jawed fish]]es, as well as many [[ostracoderm|armoured]] [[agnatha|jawless fish]], populate the seas. [[Eurypterid|Sea-scorpions]] reach large size. [[Tabulate coral|Tabulate]] and [[Rugosa|rugose]] corals, [[brachiopod]]s (''Pentamerida'', [[Rhynchonellida]], etc.), and [[crinoid]]s all abundant. [[Trilobite]]s and [[mollusk]]s diverse; [[graptolite]]s not as varied. Beginning of [[Caledonian Orogeny]] for hills in England, Ireland, Wales, Scotland, and the [[Scandinavian Mountains]]. Also continued into Devonian period as the [[Acadian Orogeny]], above. [[Taconic Orogeny]] tapers off. [[Lachlan Orogeny]] on [[Australia (Continent)|Australian Continent]] tapers off.
+
|rowspan="8"| First [[Vascular plant]]s (the [[rhyniophytes]] and their relatives), first [[millipede]]s and[[Arthropleurida|arthropleurid]]s on land. First [[jawed fish]]es, as well as many [[ostracoderm|armoured]] [[agnatha|jawless fish]], populate the seas. [[Eurypterid|Sea-scorpions]] reach large size. [[Tabulate coral|Tabulate]] and [[Rugosa|rugose]] corals, [[brachiopod]]s (''Pentamerida'', [[Rhynchonellida]], etc.), and [[crinoid]]s all abundant. [[Trilobite]]s and [[mollusk]]s diverse; [[graptolite]]s not as varied. Beginning of [[Caledonian Orogeny]] for hills in England, Ireland, Wales, Scotland, and the [[Scandinavian Mountains]]. Also continued into Devonian period as the [[Acadian Orogeny]], above. [[Taconic Orogeny]] tapers off. [[Lachlan Orogeny]] on [[Australia (Continent)|Australian Continent]] tapers off.
 
|style="background:#e9c7e2"| 423.0 ±&nbsp;2.3<sup>*</sup>
 
|style="background:#e9c7e2"| 423.0 ±&nbsp;2.3<sup>*</sup>
 
|-
 
|-
Line 330: Line 330:
 
|rowspan="3" style="background:#fbb4bd"| [[Late Ordovician|Upper]]
 
|rowspan="3" style="background:#fbb4bd"| [[Late Ordovician|Upper]]
 
| [[Hirnantian]]
 
| [[Hirnantian]]
|rowspan="7"| [[Invertebrate]]s diversify into many new types (e.g., long [[orthoconic|straight-shelled]] [[orthocerida|cephalopods]]). Early [[coral]]s, articulate [[brachiopod]]s (''Orthida'', ''Strophomenida'', etc.), [[Bivalvia|bivalves]], [[nautiloid]]s, [[trilobite]]s, [[ostracod]]s, [[bryozoa]], many types of [[echinoderms]] ([[crinoid]]s, [[Cystoidea|cystoids]], [[Asteroidea|starfish]], etc.), branched [[graptolite]]s, and other taxa all common. [[Conodont]]s (early [[plankton]]ic [[vertebrate]]s) appear. First [[Embryophyte|green plant]]s and [[fungus|fungi]] on land. Ice age at end of period.
+
|rowspan="7"| [[Invertebrate]]s diversify into many new types (e.g., long [[orthoconic|straight-shelled]] [[orthocerida|cephalopods]]). Early [[coral]]s, articulate [[brachiopod]]s (''Orthida'', ''Strophomenida'', etc.), [[Bivalvia|bivalves]], [[nautiloid]]s, [[trilobite]]s,[[ostracod]]s, [[bryozoa]], many types of [[echinoderms]] ([[crinoid]]s, [[Cystoidea|cystoids]], [[Asteroidea|starfish]], etc.), branched[[graptolite]]s, and other taxa all common. [[Conodont]]s (early [[plankton]]ic [[vertebrate]]s) appear. First [[Embryophyte|green plant]]s and [[fungus|fungi]] on land. Ice age at end of period.
 
|style="background:#fbb4bd"| 445.2&nbsp;±&nbsp;1.4<sup>*</sup>
 
|style="background:#fbb4bd"| 445.2&nbsp;±&nbsp;1.4<sup>*</sup>
 
|-
 
|-
Line 356: Line 356:
 
|rowspan="3" style="background:#fdcdb8"| [[Furongian]]
 
|rowspan="3" style="background:#fdcdb8"| [[Furongian]]
 
| [[Cambrian#Subdivisions|Stage 10]]
 
| [[Cambrian#Subdivisions|Stage 10]]
|rowspan="10"| Major diversification of life in the [[Cambrian Explosion]]. Numerous fossils; most modern [[Animalia|animal]] [[Phylum|phyla]] appear. First [[chordates]] appear, along with a number of extinct, problematic phyla. Reef-building [[Archaeocyatha]] abundant; then vanish. [[Trilobite]]s, [[priapulid]] worms, [[Porifera|sponges]], inarticulate [[brachiopod]]s (unhinged lampshells), and many other animals numerous. [[Anomalocarid]]s are giant predators, while many Ediacaran fauna die out. [[Prokaryote]]s, [[protist]]s (e.g., [[foram]]s), [[fungus|fungi]] and [[algae]] continue to present day. [[Gondwana]] emerges. [[Petermann Orogeny]] on the [[Australia (Continent)|Australian Continent]] tapers off (550&ndash;535 [[Year#SI_prefix_multipliers|Ma]]). Ross Orogeny in Antarctica. [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]], majority of orogenic activity from 514&ndash;500 [[Year#SI_prefix_multipliers|Ma]]. [[Lachlan Orogeny]] on [[Australia (Continent)|Australian Continent]], c. 540&ndash;440 [[Year#SI_prefix_multipliers|Ma]]. [[Earth's atmosphere|Atmospheric]] CO<sub>2</sub> content roughly 20&ndash;35 times present-day ([[Holocene]]) levels (6000 ppmv compared to today's 385 ppmv)<ref name="atmospheric-carbon-dioxide" />
+
|rowspan="10"| Major diversification of life in the [[Cambrian Explosion]]. Numerous fossils; most modern [[Animalia|animal]][[Phylum|phyla]] appear. First [[chordates]] appear, along with a number of extinct, problematic phyla. Reef-building [[Archaeocyatha]]abundant; then vanish. [[Trilobite]]s, [[priapulid]] worms, [[Porifera|sponges]], inarticulate [[brachiopod]]s (unhinged lampshells), and many other animals numerous. [[Anomalocarid]]s are giant predators, while many Ediacaran fauna die out. [[Prokaryote]]s, [[protist]]s (e.g., [[foram]]s), [[fungus|fungi]] and [[algae]] continue to present day. [[Gondwana]] emerges. [[Petermann Orogeny]] on the [[Australia (Continent)|Australian Continent]] tapers off (550&ndash;535 [[Year#SI_prefix_multipliers|Ma]]). Ross Orogeny in Antarctica. [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]], majority of orogenic activity from 514&ndash;500[[Year#SI_prefix_multipliers|Ma]]. [[Lachlan Orogeny]] on [[Australia (Continent)|Australian Continent]], c. 540&ndash;440[[Year#SI_prefix_multipliers|Ma]]. [[Earth's atmosphere|Atmospheric]] CO<sub>2</sub> content roughly 20&ndash;35 times present-day ([[Holocene]]) levels (6000 ppmv compared to today's 385 ppmv)<ref name="atmospheric-carbon-dioxide" />
 
|style="background:#fdcdb8"| c. 489.5
 
|style="background:#fdcdb8"| c. 489.5
 
|-
 
|-
Line 390: Line 390:
 
|-
 
|-
 
|rowspan="18" style="background:#b0c4d8"| [[Precambrian|Precam-<br />brian]]<ref name="aka-cryptozoic">The [[Precambrian]] is also known as Cryptozoic.</ref>
 
|rowspan="18" style="background:#b0c4d8"| [[Precambrian|Precam-<br />brian]]<ref name="aka-cryptozoic">The [[Precambrian]] is also known as Cryptozoic.</ref>
|rowspan="10" style="background:#ccd891"| [[Proterozoic|Proter-<br />ozoic]]<ref name="Precambrian-Time">The [[Proterozoic]], [[Archean]] and [[Hadean]] are often collectively referred to as the [[Precambrian|Precambrian Time]] or sometimes, also the Cryptozoic.</ref>
+
|rowspan="10" style="background:#ccd891"| [[Proterozoic|Proter-<br />ozoic]]<ref name="Precambrian-Time">The [[Proterozoic]], [[Archean]]and [[Hadean]] are often collectively referred to as the [[Precambrian|Precambrian Time]] or sometimes, also the Cryptozoic.</ref>
 
|rowspan="3" style="background:#caa595"| [[Neoproterozoic|Neo-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|rowspan="3" style="background:#caa595"| [[Neoproterozoic|Neo-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|style="background:#ead8bc"| [[Ediacaran]]
 
|style="background:#ead8bc"| [[Ediacaran]]
|colspan="3"| Good [[fossil]]s of the first [[Metazoa|multi-celled animal]]s. [[Ediacaran biota]] flourish worldwide in seas. Simple [[trace fossil]]s of possible worm-like ''[[Trichophycus pedum|Trichophycus]]'', etc. First [[Porifera|sponge]]s and [[Trilobita|trilobitomorph]]s. Enigmatic forms include many soft-jellied creatures shaped like bags, disks, or quilts (like ''[[Dickinsonia]]''). [[Taconic Orogeny]] in North America. [[Aravalli Range]] [[orogeny]] in [[Indian Subcontinent]]. Beginning of [[Petermann Orogeny]] on [[Australia (Continent)|Australian Continent]]. Beardmore Orogeny in Antarctica, 633&ndash;620 [[Year#SI_prefix_multipliers|Ma]].
+
|colspan="3"| Good [[fossil]]s of the first [[Metazoa|multi-celled animal]]s. [[Ediacaran biota]] flourish worldwide in seas. Simple[[trace fossil]]s of possible worm-like ''[[Trichophycus pedum|Trichophycus]]'', etc. First [[Porifera|sponge]]s and[[Trilobita|trilobitomorph]]s. Enigmatic forms include many soft-jellied creatures shaped like bags, disks, or quilts (like''[[Dickinsonia]]''). [[Taconic Orogeny]] in North America. [[Aravalli Range]] [[orogeny]] in [[Indian Subcontinent]]. Beginning of[[Petermann Orogeny]] on [[Australia (Continent)|Australian Continent]]. Beardmore Orogeny in Antarctica, 633&ndash;620[[Year#SI_prefix_multipliers|Ma]].
 
|style="background:#ead8bc"| c. 635<sup>*</sup>
 
|style="background:#ead8bc"| c. 635<sup>*</sup>
 
|-
 
|-
Line 401: Line 401:
 
|-
 
|-
 
|style="background:#cba46c"| [[Tonian]]
 
|style="background:#cba46c"| [[Tonian]]
|colspan="3"| [[Rodinia]] supercontinent persists.  [[Trace fossil]]s of simple [[multicellular|multi-celled]] [[Eukaryota|eukaryote]]s. First radiation of [[dinoflagellate]]-like [[acritarch]]s. [[Grenville Orogeny]] tapers off in North America. [[Pan-African orogeny]] in Africa. Lake Ruker / Nimrod Orogeny in Antarctica, 1000&nbsp;±&nbsp;150 [[Year#SI_prefix_multipliers|Ma]]. Edmundian Orogeny (c. 920 - 850 [[Year#SI_prefix_multipliers|Ma]]), [[Gascoyne Complex]], Western Australia. [[Adelaide Geosyncline]] laid down on [[Australia (continent)|Australian Continent]], beginning of [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]] in that continent.
+
|colspan="3"| [[Rodinia]] supercontinent persists.  [[Trace fossil]]s of simple [[multicellular|multi-celled]] [[Eukaryota|eukaryote]]s. First radiation of [[dinoflagellate]]-like [[acritarch]]s. [[Grenville Orogeny]] tapers off in North America. [[Pan-African orogeny]] in Africa. Lake Ruker / Nimrod Orogeny in Antarctica, 1000&nbsp;±&nbsp;150 [[Year#SI_prefix_multipliers|Ma]]. Edmundian Orogeny (c. 920 - 850[[Year#SI_prefix_multipliers|Ma]]), [[Gascoyne Complex]], Western Australia. [[Adelaide Geosyncline]] laid down on [[Australia (continent)|Australian Continent]], beginning of [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]] in that continent.
 
|style="background:#cba46c"| 1000<ref name="absolute-age" />
 
|style="background:#cba46c"| 1000<ref name="absolute-age" />
 
|-
 
|-
Line 414: Line 414:
 
|-
 
|-
 
|style="background:#ddc288"| [[Calymmian]]
 
|style="background:#ddc288"| [[Calymmian]]
|colspan="3"| [[Platform cover]]s expand. Barramundi Orogeny, [[McArthur Basin]], [[Northern Australia]], and Isan Orogeny, [[circa|c.]] 1600 [[Year#SI_prefix_multipliers|Ma]], Mount Isa Block, Queensland
+
|colspan="3"| [[Platform cover]]s expand. Barramundi Orogeny, [[McArthur Basin]], [[Northern Australia]], and Isan Orogeny, [[circa|c.]]1600 [[Year#SI_prefix_multipliers|Ma]], Mount Isa Block, Queensland
 
|style="background:#ddc288"| 1600<ref name="absolute-age" />
 
|style="background:#ddc288"| 1600<ref name="absolute-age" />
 
|-
 
|-
Line 423: Line 423:
 
|-
 
|-
 
|style="background:#b3b25e"| [[Orosirian]]
 
|style="background:#b3b25e"| [[Orosirian]]
|colspan="3"| The [[Earth's atmosphere|atmosphere]] becomes [[oxygen]]ic. [[Vredefort crater|Vredefort]] and [[Sudbury Basin]] asteroid impacts. Much [[orogeny]]. [[Penokean orogeny|Penokean]] and [[Trans-Hudsonian Orogeny|Trans-Hudsonian Orogenies]] in North America. Early Ruker Orogeny in Antarctica, 2000 - 1700 [[Year#SI_prefix_multipliers|Ma]]. Glenburgh Orogeny, [[Gascoyne Complex|Glenburgh Terrane]], [[Australia (Continent)|Australian Continent]] [[circa|c.]] 2005–1920 [[Year#SI prefix multipliers|Ma]]. Kimban Orogeny, [[Gawler craton]] in Australian Continent begins.
+
|colspan="3"| The [[Earth's atmosphere|atmosphere]] becomes [[oxygen]]ic. [[Vredefort crater|Vredefort]] and [[Sudbury Basin]] asteroid impacts. Much [[orogeny]]. [[Penokean orogeny|Penokean]] and [[Trans-Hudsonian Orogeny|Trans-Hudsonian Orogenies]] in North America. Early Ruker Orogeny in Antarctica, 2000 - 1700 [[Year#SI_prefix_multipliers|Ma]]. Glenburgh Orogeny, [[Gascoyne Complex|Glenburgh Terrane]],[[Australia (Continent)|Australian Continent]] [[circa|c.]] 2005–1920 [[Year#SI prefix multipliers|Ma]]. Kimban Orogeny, [[Gawler craton]]in Australian Continent begins.
 
|style="background:#b3b25e"| 2050<ref name="absolute-age" />
 
|style="background:#b3b25e"| 2050<ref name="absolute-age" />
 
|-
 
|-
Line 431: Line 431:
 
|-
 
|-
 
|style="background:#b3b25e"| [[Siderian]]
 
|style="background:#b3b25e"| [[Siderian]]
|colspan="3"| [[Oxygen catastrophe]]: [[banded iron formation]]s forms. Sleaford Orogeny on [[Australia (Continent)|Australian Continent]], [[Gawler Craton]] 2440&ndash;2420 [[Year#SI_prefix_multipliers|Ma]].
+
|colspan="3"| [[Oxygen catastrophe]]: [[banded iron formation]]s forms. Sleaford Orogeny on [[Australia (Continent)|Australian Continent]],[[Gawler Craton]] 2440&ndash;2420 [[Year#SI_prefix_multipliers|Ma]].
 
|style="background:#b3b25e"| 2500<ref name="absolute-age" />
 
|style="background:#b3b25e"| 2500<ref name="absolute-age" />
 
|-
 
|-
Line 440: Line 440:
 
|-
 
|-
 
|style="background:#b2b5af"| [[Mesoarchean]]<ref name="Precambrian-Time" />
 
|style="background:#b2b5af"| [[Mesoarchean]]<ref name="Precambrian-Time" />
|colspan="4"| First [[stromatolite]]s (probably [[colony (biology)|colonial]] [[cyanobacteria]]). Oldest [[macrofossil]]s. Humboldt Orogeny in Antarctica. [[Blake River Megacaldera Complex]] begins to form in present-day [[Ontario]] and [[Quebec]], ends by roughly 2696 [[Year#SI_prefix_multipliers|Ma]].
+
|colspan="4"| First [[stromatolite]]s (probably [[colony (biology)|colonial]] [[cyanobacteria]]). Oldest [[macrofossil]]s. Humboldt Orogeny in Antarctica. [[Blake River Megacaldera Complex]] begins to form in present-day [[Ontario]] and [[Quebec]], ends by roughly 2696[[Year#SI_prefix_multipliers|Ma]].
 
|style="background:#b2b5af"| 3200<ref name="absolute-age" />
 
|style="background:#b2b5af"| 3200<ref name="absolute-age" />
 
|-
 
|-
Line 454: Line 454:
 
|style="background:#809090"| [[Early Imbrian]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names">These unit names were taken from the [[Lunar geologic timescale]] and refer to geologic events that did not occur on Earth. Their use for Earth geology is unofficial. Note that their start times do not dovetail perfectly with the later, terrestrially defined boundaries.</ref>
 
|style="background:#809090"| [[Early Imbrian]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names">These unit names were taken from the [[Lunar geologic timescale]] and refer to geologic events that did not occur on Earth. Their use for Earth geology is unofficial. Note that their start times do not dovetail perfectly with the later, terrestrially defined boundaries.</ref>
 
|colspan="4"| Indirect [[photosynthetic]] evidence (e.g., [[kerogen]]) of primordial life.  This era overlaps the end of the [[Late Heavy Bombardment]] of the [[inner solar system|inner]] [[solar system]].
 
|colspan="4"| Indirect [[photosynthetic]] evidence (e.g., [[kerogen]]) of primordial life.  This era overlaps the end of the [[Late Heavy Bombardment]] of the [[inner solar system|inner]] [[solar system]].
|style="background:#809090"| c.4100
+
|style="background:#809090"| c.3850
 
|-
 
|-
 
|style="background:#809090"| [[Nectarian]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
 
|style="background:#809090"| [[Nectarian]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
 
|colspan="4"| This unit gets its name from the [[lunar geologic timescale]] when the [[Nectaris Basin]] and other greater [[lunar basin]]s form by big [[impact event]]s.
 
|colspan="4"| This unit gets its name from the [[lunar geologic timescale]] when the [[Nectaris Basin]] and other greater [[lunar basin]]s form by big [[impact event]]s.
|style="background:#809090"| c.4300
+
|style="background:#809090"| c.3920
 
|-
 
|-
 
|style="background:#809090"| [[Basin Groups]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
 
|style="background:#809090"| [[Basin Groups]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
 
|colspan="4"| Oldest known rock (4030 [[Year#SI_prefix_multipliers|Ma]])<ref name="Oldest-rock">{{cite journal|doi=10.1007/s004100050465|title=Priscoan (4.00&ndash;4.03 Ga) orthogneisses from northwestern Canada|year=1999|author=Bowring, Samuel A.|journal=Contributions to Mineralogy and Petrology|volume=134|issue=1|pages=3|last2=Williams|first2=Ian S.|bibcode=1999CoMP..134....3B}} The oldest rock on Earth is the [[Acasta Gneiss]], and it dates to 4.03 Ga, located in the [[Northwest Territories]] of Canada.</ref>. The first [[organism|life form]]s and [[self-replication|self-replicating]] [[RNA]] [[molecule]]s evolve around 4000 [[Year#SI_prefix_multipliers|Ma]], after the [[Late Heavy Bombardment]] ends on Earth. [[Napier_Mountains|Napier]] Orogeny in Antarctica, 4000&nbsp;±&nbsp;200 [[Year#SI_prefix_multipliers|Ma]].
 
|colspan="4"| Oldest known rock (4030 [[Year#SI_prefix_multipliers|Ma]])<ref name="Oldest-rock">{{cite journal|doi=10.1007/s004100050465|title=Priscoan (4.00&ndash;4.03 Ga) orthogneisses from northwestern Canada|year=1999|author=Bowring, Samuel A.|journal=Contributions to Mineralogy and Petrology|volume=134|issue=1|pages=3|last2=Williams|first2=Ian S.|bibcode=1999CoMP..134....3B}} The oldest rock on Earth is the [[Acasta Gneiss]], and it dates to 4.03 Ga, located in the [[Northwest Territories]] of Canada.</ref>. The first [[organism|life form]]s and [[self-replication|self-replicating]] [[RNA]] [[molecule]]s evolve around 4000 [[Year#SI_prefix_multipliers|Ma]], after the [[Late Heavy Bombardment]] ends on Earth. [[Napier_Mountains|Napier]] Orogeny in Antarctica, 4000&nbsp;±&nbsp;200 [[Year#SI_prefix_multipliers|Ma]].
|style="background:#809090"| c.4500
+
|style="background:#809090"| c.4150
 
|-
 
|-
 
|style="background:#809090"| [[Cryptic era|Cryptic]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
 
|style="background:#809090"| [[Cryptic era|Cryptic]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
|colspan="4"| Oldest known [[mineral]] ([[Zircon]], 4404&nbsp;±&nbsp;8 [[Year#SI_prefix_multipliers|Ma]]).<ref name="geology-wisc-edu">[http://www.geology.wisc.edu/%7Evalley/zircons/Wilde2001Nature.pdf Geology.wisc.edu]</ref> Formation of [[Moon]] (4533 [[Year#SI_prefix_multipliers|Ma]]), probably from [[Giant_impact_hypothesis|giant impact]]. Formation of [[Earth]] (4567.17 to 4570 [[Year#SI_prefix_multipliers|Ma]])
+
|colspan="4"| Oldest known [[mineral]] ([[Zircon]], 4404&nbsp;±&nbsp;8 [[Year#SI_prefix_multipliers|Ma]]).<ref name="geology-wisc-edu">[http://www.geology.wisc.edu/%7Evalley/zircons/Wilde2001Nature.pdf Geology.wisc.edu]</ref> Formation of [[Moon]](4533 [[Year#SI_prefix_multipliers|Ma]]), probably from [[Giant_impact_hypothesis|giant impact]]. Formation of [[Earth]] (4567.17 to 4570[[Year#SI_prefix_multipliers|Ma]])
|style="background:#809090"| c.4567
+
|style="background:#809090"| c.4600
 
|}</div>
 
|}</div>
 
<includeonly>
 
<includeonly>

Revision as of 13:08, 10 March 2013

ar:قالب:المقياس الزمني الجيولوجي es:Plantilla:Escala temporal geológica hi:भूवैज्ञानिक समय-मान pt:Predefinição:Tempo geológico zh:Template:Geologic time scale