Difference between revisions of "Template:Geologic time scale"

From blackwiki
Jump to navigation Jump to search
(Added missing spaces before years in Cryptic)
imported>Anomalocaris
m (dashes; space before unit; fix date; <ref> after not before period)
Line 8: Line 8:
 
! [[Eon (geology)|Eon]]
 
! [[Eon (geology)|Eon]]
 
! [[Era (geology)|Era]]
 
! [[Era (geology)|Era]]
! [[Period (geology)|Period]]<ref name="faunal-stages">Paleontologists often refer to [[faunal stage]]s rather than geologic (geological) periods. The stage nomenclature is quite complex. For an excellent time-ordered list of faunal stages, see {{cite web|url=http://flatpebble.nceas.ucsb.edu/cgi-bin/bridge.pl?action=startScale| title=The Paleobiology Database| accessdate=2006-03-19}}</ref>
+
! [[Period (geology)|Period]]<ref name="faunal-stages">Paleontologists often refer to [[faunal stage]]s rather than geologic (geological) periods. The stage nomenclature is quite complex. For an excellent time-ordered list of faunal stages, see {{cite web|url=http://flatpebble.nceas.ucsb.edu/cgi-bin/bridge.pl?action=startScale| title=The Paleobiology Database| accessdate=2006-03-19}}</ref>
 
! [[Epoch (geology)|Epoch]]
 
! [[Epoch (geology)|Epoch]]
 
! [[Age (geology)|Age]]<ref name="uncertain-dates" />
 
! [[Age (geology)|Age]]<ref name="uncertain-dates" />
Line 21: Line 21:
 
|style="background:{{period color|Holocene}}"|
 
|style="background:{{period color|Holocene}}"|
 
[[Chronozone|chrons]]: [[Subatlantic]]{{·}}[[Subboreal]]{{·}}[[Atlantic (period)|Atlantic]]{{·}}[[Boreal (period)|Boreal]]{{·}}[[Preboreal]]
 
[[Chronozone|chrons]]: [[Subatlantic]]{{·}}[[Subboreal]]{{·}}[[Atlantic (period)|Atlantic]]{{·}}[[Boreal (period)|Boreal]]{{·}}[[Preboreal]]
|rowspan="1" | [[Quaternary glaciation|Quaternary Ice Age]] recedes, and the current [[interglacial]] begins; rise of human [[civilization]]. [[Sahara]] forms from savannah, and [[agriculture]] begins. [[Stone Age]] cultures give way to [[Bronze Age]] (3300 BC) and [[Iron Age]] (1200 BC), giving rise to [[Synoptic table of the principal old world prehistoric cultures|many pre-historic cultures]] throughout the world. [[Little Ice Age]] ([[stadial]]) causes brief cooling in [[Northern Hemisphere]] from 1400 to 1850. Following the [[Industrial Revolution]], [[Earth's atmosphere|Atmospheric]] [[Carbon dioxide in the Earth's atmosphere|CO<sub>2</sub>]] levels rise from around 280 [[parts per million]] volume (ppmv) to the current level of 400<ref>"NASA Scientists React to 400 ppm Carbon Milestone". Accessed 1/15/2014 [http://climate.nasa.gov/400ppmquotes/]</ref> ppmv.<ref name="Royer">{{cite journal |last=Royer |title={{CO2}}-forced climate thresholds during the Phanerozoic |journal=Geochimica et Cosmochimica Acta |volume=70 |pages=5665–75 |year=2006 |url=http://droyer.web.wesleyan.edu/PhanCO2%28GCA%29.pdf |format=PDF |doi=10.1016/j.gca.2005.11.031 |first1=Dana L. |issue=23|bibcode = 2006GeCoA..70.5665R }}</ref><ref name="atmospheric-carbon-dioxide">For more information on this, see [[Atmosphere of Earth#Evolution of Earth's atmosphere]], [[Carbon dioxide in the Earth's atmosphere]], and [[climate change]]. Specific graphs of reconstructed CO<sub>2</sub> levels over the past ~550, 65, and 5 million years can be seen at [[:Image:Phanerozoic_Carbon_Dioxide.png]], [[:Image:65 Myr Climate Change.png]], [[:Image:Five Myr Climate Change.png]], respectively.</ref>
+
|rowspan="1" | [[Quaternary glaciation|Quaternary Ice Age]] recedes, and the current [[interglacial]] begins; rise of human [[civilization]]. [[Sahara]] forms from savannah, and [[agriculture]] begins. [[Stone Age]] cultures give way to [[Bronze Age]] (3300 BC) and [[Iron Age]] (1200 BC), giving rise to [[Synoptic table of the principal old world prehistoric cultures|many pre-historic cultures]] throughout the world. [[Little Ice Age]] ([[stadial]]) causes brief cooling in [[Northern Hemisphere]] from 1400 to 1850. Following the [[Industrial Revolution]], [[Earth's atmosphere|Atmospheric]] [[Carbon dioxide in the Earth's atmosphere|CO<sub>2</sub>]] levels rise from around 280 [[parts per million]] volume (ppmv) to the current level of 400<ref>"NASA Scientists React to 400 ppm Carbon Milestone". Retrieved 2014-01-15 [http://climate.nasa.gov/400ppmquotes/]</ref> ppmv.<ref name="Royer">{{cite journal |last=Royer |title={{CO2}}-forced climate thresholds during the Phanerozoic |journal=Geochimica et Cosmochimica Acta |volume=70 |pages=5665–75 |year=2006 |url=http://droyer.web.wesleyan.edu/PhanCO2%28GCA%29.pdf |format=PDF |doi=10.1016/j.gca.2005.11.031 |first1=Dana L. |issue=23|bibcode = 2006GeCoA..70.5665R }}</ref><ref name="atmospheric-carbon-dioxide">For more information on this, see [[Atmosphere of Earth#Evolution of Earth's atmosphere]], [[Carbon dioxide in the Earth's atmosphere]], and [[climate change]]. Specific graphs of reconstructed CO<sub>2</sub> levels over the past ~550, 65, and 5 million years can be seen at [[:Image:Phanerozoic_Carbon_Dioxide.png]], [[:Image:65 Myr Climate Change.png]], [[:Image:Five Myr Climate Change.png]], respectively.</ref>
 
|style="background:{{period color|Holocene}}"| 0.0117<ref name="holocene">The start time for the [[Holocene]] epoch is here given as [[Upper Paleolithic|11,700]] [[before present|years ago]]. For further discussion of the dating of this epoch, see [[Holocene]].</ref>
 
|style="background:{{period color|Holocene}}"| 0.0117<ref name="holocene">The start time for the [[Holocene]] epoch is here given as [[Upper Paleolithic|11,700]] [[before present|years ago]]. For further discussion of the dating of this epoch, see [[Holocene]].</ref>
 
|-
 
|-
 
|rowspan="4" style="background:{{period color|Pleistocene}}"| [[Pleistocene]]
 
|rowspan="4" style="background:{{period color|Pleistocene}}"| [[Pleistocene]]
 
|style="background:{{period color|Upper Pleistocene}}"| [[Late Pleistocene|Late]] (locally [[Tarantian]]{{·}}[[Tyrrhenian Stage|Tyrrhenian]]{{·}}[[Eemian]]{{·}}[[Sangamonian Stage|Sangamonian]])
 
|style="background:{{period color|Upper Pleistocene}}"| [[Late Pleistocene|Late]] (locally [[Tarantian]]{{·}}[[Tyrrhenian Stage|Tyrrhenian]]{{·}}[[Eemian]]{{·}}[[Sangamonian Stage|Sangamonian]])
|rowspan="4"| Flourishing and then extinction of many large [[mammal]]s ([[Pleistocene megafauna]]). Evolution of anatomically modern [[human]]s. [[Last glacial period|Quaternary Ice Age]] continues with [[Glacial period|glaciations]] and [[interstadial]]s (and the accompanying fluctuations from 100 to 300 ppmv in [[Earth's atmosphere|atmospheric]] CO<sub>2</sub> levels<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />), further intensification of [[Greenhouse and Icehouse Earth|Icehouse Earth]] conditions, roughly 1.6 [[Year#SI_prefix_multipliers|Ma]]. [[Last glacial maximum]] (30000 [[before present|years ago]]), [[last glacial period]] (18000&ndash;15000 years ago). Dawn of human [[Lower Paleolithic#Cultures|stone-age cultures]], with [[Middle Paleolithic#Cultures|increasing technical complexity]] relative to previous ice age cultures, such as [[Upper Paleolithic#Cultures|engravings and clay statues]] (e.g. [[Venus of Lespugue]]), particularly in the [[Mediterranean]] and Europe. [[Lake Toba]] [[supervolcano]] erupts 75000 years before present, causing a [[volcanic winter]] that [[Toba catastrophe theory|pushes humanity to the brink of extinction]]. Pleistocene ends with [[Oldest Dryas]], [[Older Dryas]]/[[Allerød Oscillation|Allerød]] and [[Younger Dryas]] climate events, with Younger Dryas forming the boundary with the Holocene.
+
|rowspan="4"| Flourishing and then extinction of many large [[mammal]]s ([[Pleistocene megafauna]]). Evolution of anatomically modern [[human]]s. [[Last glacial period|Quaternary Ice Age]] continues with [[Glacial period|glaciations]] and [[interstadial]]s (and the accompanying fluctuations from 100 to 300 ppmv in [[Earth's atmosphere|atmospheric]] CO<sub>2</sub> levels<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />), further intensification of [[Greenhouse and Icehouse Earth|Icehouse Earth]] conditions, roughly 1.6 [[Year#SI_prefix_multipliers|Ma]]. [[Last glacial maximum]] (30000 [[before present|years ago]]), [[last glacial period]] (18000&ndash;15000 years ago). Dawn of human [[Lower Paleolithic#Cultures|stone-age cultures]], with [[Middle Paleolithic#Cultures|increasing technical complexity]] relative to previous ice age cultures, such as [[Upper Paleolithic#Cultures|engravings and clay statues]] (e.g. [[Venus of Lespugue]]), particularly in the [[Mediterranean]] and Europe. [[Lake Toba]] [[supervolcano]] erupts 75000 years before present, causing a [[volcanic winter]] that [[Toba catastrophe theory|pushes humanity to the brink of extinction]]. Pleistocene ends with [[Oldest Dryas]], [[Older Dryas]]/[[Allerød Oscillation|Allerød]] and [[Younger Dryas]] climate events, with Younger Dryas forming the boundary with the Holocene.
 
|style="background:{{period color|upper Pleistocene}}"| 0.126
 
|style="background:{{period color|upper Pleistocene}}"| 0.126
 
|-
 
|-
Line 41: Line 41:
 
|rowspan="2" style="background:{{period color|Pliocene}}"| [[Pliocene]]
 
|rowspan="2" style="background:{{period color|Pliocene}}"| [[Pliocene]]
 
|rowspan="1" style="background:{{period color|Piacenzian}}"| [[Piacenzian]]/[[Blancan]]
 
|rowspan="1" style="background:{{period color|Piacenzian}}"| [[Piacenzian]]/[[Blancan]]
|rowspan="2"| Intensification of present [[Greenhouse and Icehouse Earth|Icehouse conditions]], [[Quaternary glaciation|present (Quaternary) ice age]] begins roughly 2.58 Ma; cool and dry [[climate]]. [[Australopithecine]]s, many of the existing genera of mammals, and recent [[mollusk]]s appear. ''[[Homo habilis]]'' appears.
+
|rowspan="2"| Intensification of present [[Greenhouse and Icehouse Earth|Icehouse conditions]], [[Quaternary glaciation|present (Quaternary) ice age]] begins roughly 2.58 Ma; cool and dry [[climate]]. [[Australopithecine]]s, many of the existing genera of mammals, and recent [[mollusk]]s appear. ''[[Homo habilis]]'' appears.
 
|style="background:{{period color|Piacenzian}}"| 3.600<sup>*</sup>
 
|style="background:{{period color|Piacenzian}}"| 3.600<sup>*</sup>
 
|-
 
|-
Line 49: Line 49:
 
|rowspan="6" style="background:{{period color|Miocene}}"| [[Miocene]]
 
|rowspan="6" style="background:{{period color|Miocene}}"| [[Miocene]]
 
|style="background:{{period color|Messinian}}"| [[Messinian]]
 
|style="background:{{period color|Messinian}}"| [[Messinian]]
|rowspan="6"| [[Greenhouse and Icehouse Earth|Moderate Icehouse climate]], punctuated by [[ice age]]s; [[Orogeny]] in [[northern hemisphere]]. Modern [[mammal]] and [[bird]] families become recognizable. [[Equidae|Horses]] and [[mastodon]]s diverse. [[Grass]]es become ubiquitous. First [[ape]]s appear (for reference see the article: "[[Sahelanthropus tchadensis]]"). [[Kaikoura Orogeny]] forms [[Southern Alps]] in New Zealand, continues today. Orogeny of the Alps in Europe slows, but continues to this day. [[Carpathian orogeny]] forms [[Carpathian Mountains]] in [[Central Europe|Central]] and [[Eastern Europe]]. [[Hellenic orogeny]] in Greece and Aegean Sea slows, but continues to this day. [[Middle Miocene Disruption]] occurs. Widespread forests slowly [[photosynthesis|draw in]] massive amounts of CO<sub>2</sub>, gradually lowering the level of atmospheric CO<sub>2</sub> from 650 ppmv down to around 100 ppmv.<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />
+
|rowspan="6"| [[Greenhouse and Icehouse Earth|Moderate Icehouse climate]], punctuated by [[ice age]]s; [[Orogeny]] in [[northern hemisphere]]. Modern [[mammal]] and [[bird]] families become recognizable. [[Equidae|Horses]] and [[mastodon]]s diverse. [[Grass]]es become ubiquitous. First [[ape]]s appear (for reference see the article: "[[Sahelanthropus tchadensis]]"). [[Kaikoura Orogeny]] forms [[Southern Alps]] in New Zealand, continues today. Orogeny of the Alps in Europe slows, but continues to this day. [[Carpathian orogeny]] forms [[Carpathian Mountains]] in [[Central Europe|Central]] and [[Eastern Europe]]. [[Hellenic orogeny]] in Greece and Aegean Sea slows, but continues to this day. [[Middle Miocene Disruption]] occurs. Widespread forests slowly [[photosynthesis|draw in]] massive amounts of CO<sub>2</sub>, gradually lowering the level of atmospheric CO<sub>2</sub> from 650 ppmv down to around 100 ppmv.<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />
 
|style="background:{{period color|Messinian}}"| 7.246<sup>*</sup>
 
|style="background:{{period color|Messinian}}"| 7.246<sup>*</sup>
 
|-
 
|-
Line 78: Line 78:
 
|rowspan="4" style="background:{{period color|Eocene}}"| [[Eocene]]
 
|rowspan="4" style="background:{{period color|Eocene}}"| [[Eocene]]
 
|style="background:{{period color|Priabonian}}"| [[Priabonian]]
 
|style="background:{{period color|Priabonian}}"| [[Priabonian]]
|rowspan="4"| [[Greenhouse and Icehouse Earth|Moderate, cooling climate]]. Archaic [[mammal]]s (e.g. [[Creodont]]s, [[Condylarth]]s, [[Uintatheriidae|Uintatheres]], etc.) flourish and continue to develop during the epoch. Appearance of several "modern" mammal families. Primitive [[Cetacea|whales]] diversify. First [[grass]]es. Reglaciation of Antarctica and formation of its [[ice cap]]; [[Azolla event]] triggers [[ice age]], and the [[Greenhouse and Icehouse Earth|Icehouse Earth]] climate that would follow it to this day, from the settlement and decay of [[seafloor]] [[algae]] drawing in massive amounts of atmospheric [[carbon dioxide]],<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" /> lowering it from 3800 [[parts per million|ppmv]] down to 650 ppmv. End of [[Laramide Orogeny|Laramide]] and [[Sevier orogeny|Sevier Orogenies]] of the [[Rocky Mountains]] in North America. [[Orogeny]] of the [[Alps]] in Europe begins. [[Hellenic Orogeny]] begins in Greece and [[Aegean Sea]].
+
|rowspan="4"| [[Greenhouse and Icehouse Earth|Moderate, cooling climate]]. Archaic [[mammal]]s (e.g. [[Creodont]]s, [[Condylarth]]s, [[Uintatheriidae|Uintatheres]], etc.) flourish and continue to develop during the epoch. Appearance of several "modern" mammal families. Primitive [[Cetacea|whales]] diversify. First [[grass]]es. Reglaciation of Antarctica and formation of its [[ice cap]]; [[Azolla event]] triggers [[ice age]], and the [[Greenhouse and Icehouse Earth|Icehouse Earth]] climate that would follow it to this day, from the settlement and decay of [[seafloor]] [[algae]] drawing in massive amounts of atmospheric [[carbon dioxide]],<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" /> lowering it from 3800 [[parts per million|ppmv]] down to 650 ppmv. End of [[Laramide Orogeny|Laramide]] and [[Sevier orogeny|Sevier Orogenies]] of the [[Rocky Mountains]] in North America. [[Orogeny]] of the [[Alps]] in Europe begins. [[Hellenic Orogeny]] begins in Greece and [[Aegean Sea]].
 
|style="background:{{period color|Priabonian}}"| 38.0
 
|style="background:{{period color|Priabonian}}"| 38.0
 
|-
 
|-
Line 92: Line 92:
 
|rowspan="3" style="background:{{period color|Paleocene}}"| [[Paleocene]]
 
|rowspan="3" style="background:{{period color|Paleocene}}"| [[Paleocene]]
 
|style="background:{{period color|Thanetian}}"| [[Thanetian]]
 
|style="background:{{period color|Thanetian}}"| [[Thanetian]]
|rowspan="3"| [[Greenhouse and Icehouse Earth|Climate tropical]]. Modern [[plant]]s appear; [[Mammal]]s diversify into a number of primitive lineages following the extinction of the dinosaurs. First large mammals (up to [[bear]] or small [[hippopotamus|hippo]] size). [[Alpine orogeny]] in Europe and Asia begins. [[Indian Subcontinent]] collides with Asia 55 [[Year#SI_prefix_multipliers|Ma]], [[Geology of the Himalaya|Himalayan Orogeny]] starts between 52 and 48 [[Year#SI_prefix_multipliers|Ma]].
+
|rowspan="3"| [[Greenhouse and Icehouse Earth|Climate tropical]]. Modern [[plant]]s appear; [[Mammal]]s diversify into a number of primitive lineages following the extinction of the dinosaurs. First large mammals (up to [[bear]] or small [[hippopotamus|hippo]] size). [[Alpine orogeny]] in Europe and Asia begins. [[Indian Subcontinent]] collides with Asia 55 [[Year#SI_prefix_multipliers|Ma]], [[Geology of the Himalaya|Himalayan Orogeny]] starts between 52 and 48 [[Year#SI_prefix_multipliers|Ma]].
 
|style="background:{{period color|Thanetian}}"| 59.2<sup>*</sup>
 
|style="background:{{period color|Thanetian}}"| 59.2<sup>*</sup>
 
|-
 
|-
Line 210: Line 210:
 
|rowspan="2" style="background:{{period color|Lopingian}}"| [[Lopingian]]
 
|rowspan="2" style="background:{{period color|Lopingian}}"| [[Lopingian]]
 
|style="background:{{period color|Changhsingian}}"| [[Changhsingian]]
 
|style="background:{{period color|Changhsingian}}"| [[Changhsingian]]
|rowspan="9"| [[Landmass]]es unite into [[supercontinent]] [[Pangaea]], creating the [[Appalachian Mountains|Appalachian]]s. End of Permo-Carboniferous glaciation. [[Synapsida|Synapsid]] [[Reptilia|reptile]]s ([[pelycosaur]]s and [[therapsid]]s) become plentiful, while [[parareptile]]s and [[temnospondyli|temnospondyl]] [[Amphibian|amphibians]] remain common. In the mid-Permian, [[coal]]-age flora are replaced by [[Conifer cone|cone]]-bearing [[gymnosperm]]s (the first true [[seed plants]]) and by the first true [[moss]]es. [[Beetles]] and [[Fly|flies]] evolve. Marine life flourishes in warm shallow reefs; [[Productida|productid]] and [[Spiriferida|spiriferid]] brachiopods, bivalves, [[foraminifera|foram]]s, and [[orthocerid|ammonoid]]s all abundant. [[Permian-Triassic extinction event]] occurs 251[[Year#SI_prefix_multipliers|Ma]]: 95% of life on Earth becomes extinct, including all [[trilobite]]s, [[graptolite]]s, and [[blastoid]]s. [[Ouachita Orogeny|Ouachita]] and [[Innuitian orogeny|Innuitian orogenies]] in North America. [[Uralian orogeny]] in Europe/Asia tapers off. [[Altai Mountains|Altaid]] orogeny in Asia. [[Hunter-Bowen Orogeny]] on [[Australia (Continent)|Australian Continent]] begins (c. 260&ndash;225 [[Year#SI_prefix_multipliers|Ma]]), forming the [[MacDonnell Ranges]].
+
|rowspan="9"| [[Landmass]]es unite into [[supercontinent]] [[Pangaea]], creating the [[Appalachian Mountains|Appalachian]]s. End of Permo-Carboniferous glaciation. [[Synapsida|Synapsid]] [[Reptilia|reptile]]s ([[pelycosaur]]s and [[therapsid]]s) become plentiful, while [[parareptile]]s and [[temnospondyli|temnospondyl]] [[Amphibian|amphibians]] remain common. In the mid-Permian, [[coal]]-age flora are replaced by [[Conifer cone|cone]]-bearing [[gymnosperm]]s (the first true [[seed plants]]) and by the first true [[moss]]es. [[Beetles]] and [[Fly|flies]] evolve. Marine life flourishes in warm shallow reefs; [[Productida|productid]] and [[Spiriferida|spiriferid]] brachiopods, bivalves, [[foraminifera|foram]]s, and [[orthocerid|ammonoid]]s all abundant. [[Permian-Triassic extinction event]] occurs 251 [[Year#SI_prefix_multipliers|Ma]]: 95% of life on Earth becomes extinct, including all [[trilobite]]s, [[graptolite]]s, and [[blastoid]]s. [[Ouachita Orogeny|Ouachita]] and [[Innuitian orogeny|Innuitian orogenies]] in North America. [[Uralian orogeny]] in Europe/Asia tapers off. [[Altai Mountains|Altaid]] orogeny in Asia. [[Hunter-Bowen Orogeny]] on [[Australia (Continent)|Australian Continent]] begins (c. 260&ndash;225 [[Year#SI_prefix_multipliers|Ma]]), forming the [[MacDonnell Ranges]].
 
|style="background:{{period color|Changhsingian}}"| 254.2 ±&nbsp;0.1<sup>*</sup>
 
|style="background:{{period color|Changhsingian}}"| 254.2 ±&nbsp;0.1<sup>*</sup>
 
|-
 
|-
Line 349: Line 349:
 
|rowspan="3" style="background:{{period color|Furongian}}"| [[Furongian]]
 
|rowspan="3" style="background:{{period color|Furongian}}"| [[Furongian]]
 
|style="background:{{period color|Stage 10}}"| [[Cambrian#Subdivisions|Stage 10]]
 
|style="background:{{period color|Stage 10}}"| [[Cambrian#Subdivisions|Stage 10]]
|rowspan="10"| Major diversification of life in the [[Cambrian Explosion]]. Numerous fossils; most modern [[Animalia|animal]] [[Phylum|phyla]] appear. First [[chordate]]s appear, along with a number of extinct, problematic phyla. Reef-building [[Archaeocyatha]] abundant; then vanish. [[Trilobite]]s, [[priapulid]] worms, [[Porifera|sponges]], inarticulate [[brachiopod]]s (unhinged lampshells), and many other animals numerous. [[Anomalocarid]]s are giant predators, while many Ediacaran fauna die out. [[Prokaryote]]s, [[protist]]s (e.g., [[foram]]s), [[fungus|fungi]] and [[algae]] continue to present day. [[Gondwana]] emerges. [[Petermann Orogeny]] on the [[Australia (Continent)|Australian Continent]] tapers off (550&ndash;535 [[Year#SI_prefix_multipliers|Ma]]). Ross Orogeny in Antarctica. [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]], majority of orogenic activity from 514&ndash;500[[Year#SI_prefix_multipliers|Ma]]. [[Lachlan Orogeny]] on [[Australia (Continent)|Australian Continent]], c. 540&ndash;440[[Year#SI_prefix_multipliers|Ma]]. [[Earth's atmosphere|Atmospheric]] CO<sub>2</sub> content roughly 20&ndash;35 times present-day ([[Holocene]]) levels (6000 ppmv compared to today's 385 ppmv)<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />
+
|rowspan="10"| Major diversification of life in the [[Cambrian Explosion]]. Numerous fossils; most modern [[Animalia|animal]] [[Phylum|phyla]] appear. First [[chordate]]s appear, along with a number of extinct, problematic phyla. Reef-building [[Archaeocyatha]] abundant; then vanish. [[Trilobite]]s, [[priapulid]] worms, [[Porifera|sponges]], inarticulate [[brachiopod]]s (unhinged lampshells), and many other animals numerous. [[Anomalocarid]]s are giant predators, while many Ediacaran fauna die out. [[Prokaryote]]s, [[protist]]s (e.g., [[foram]]s), [[fungus|fungi]] and [[algae]] continue to present day. [[Gondwana]] emerges. [[Petermann Orogeny]] on the [[Australia (Continent)|Australian Continent]] tapers off (550&ndash;535 [[Year#SI_prefix_multipliers|Ma]]). Ross Orogeny in Antarctica. [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]], majority of orogenic activity from 514&ndash;500 [[Year#SI_prefix_multipliers|Ma]]. [[Lachlan Orogeny]] on [[Australia (Continent)|Australian Continent]], c. 540&ndash;440 [[Year#SI_prefix_multipliers|Ma]]. [[Earth's atmosphere|Atmospheric]] CO<sub>2</sub> content roughly 20&ndash;35 times present-day ([[Holocene]]) levels (6000 ppmv compared to today's 385 ppmv)<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />
 
|style="background:{{period color|Stage 10}}"| c. 489.5
 
|style="background:{{period color|Stage 10}}"| c. 489.5
 
|-
 
|-
Line 386: Line 386:
 
|rowspan="3" style="background:{{period color|Neoproterozoic}}"| [[Neoproterozoic|Neo-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|rowspan="3" style="background:{{period color|Neoproterozoic}}"| [[Neoproterozoic|Neo-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|style="background:{{period color|Ediacaran}}"| [[Ediacaran]]
 
|style="background:{{period color|Ediacaran}}"| [[Ediacaran]]
|colspan="3"| Good [[fossil]]s of the first [[Metazoa|multi-celled animal]]s. [[Ediacaran biota]] flourish worldwide in seas. Simple [[trace fossil]]s of possible worm-like ''[[Trichophycus pedum|Trichophycus]]'', etc. First [[Porifera|sponge]]s and [[Trilobita|trilobitomorph]]s. Enigmatic forms include many soft-jellied creatures shaped like bags, disks, or quilts (like''[[Dickinsonia]]''). [[Taconic Orogeny]] in North America. [[Aravalli Range]] [[orogeny]] in [[Indian Subcontinent]]. Beginning of [[Petermann Orogeny]] on [[Australia (Continent)|Australian Continent]]. Beardmore Orogeny in Antarctica, 633&ndash;620[[Year#SI_prefix_multipliers|Ma]].
+
|colspan="3"| Good [[fossil]]s of the first [[Metazoa|multi-celled animal]]s. [[Ediacaran biota]] flourish worldwide in seas. Simple [[trace fossil]]s of possible worm-like ''[[Trichophycus pedum|Trichophycus]]'', etc. First [[Porifera|sponge]]s and [[Trilobita|trilobitomorph]]s. Enigmatic forms include many soft-jellied creatures shaped like bags, disks, or quilts (like''[[Dickinsonia]]''). [[Taconic Orogeny]] in North America. [[Aravalli Range]] [[orogeny]] in [[Indian Subcontinent]]. Beginning of [[Petermann Orogeny]] on [[Australia (Continent)|Australian Continent]]. Beardmore Orogeny in Antarctica, 633&ndash;620 [[Year#SI_prefix_multipliers|Ma]].
 
|style="background:{{period color|Ediacaran}}"| c. 635<sup>*</sup>
 
|style="background:{{period color|Ediacaran}}"| c. 635<sup>*</sup>
 
|-
 
|-
Line 394: Line 394:
 
|-
 
|-
 
|style="background:{{period color|Tonian}}"| [[Tonian]]
 
|style="background:{{period color|Tonian}}"| [[Tonian]]
|colspan="3"| [[Rodinia]] supercontinent persists. [[Trace fossil]]s of simple [[multicellular|multi-celled]] [[Eukaryota|eukaryote]]s. First radiation of [[dinoflagellate]]-like [[acritarch]]s. [[Grenville Orogeny]] tapers off in North America. [[Pan-African orogeny]] in Africa. Lake Ruker / Nimrod Orogeny in Antarctica, 1000&nbsp;±&nbsp;150 [[Year#SI_prefix_multipliers|Ma]]. Edmundian Orogeny (c. 920 - 850[[Year#SI_prefix_multipliers|Ma]]), [[Gascoyne Complex]], Western Australia. [[Adelaide Geosyncline]] laid down on [[Australia (continent)|Australian Continent]], beginning of [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]] in that continent.
+
|colspan="3"| [[Rodinia]] supercontinent persists. [[Trace fossil]]s of simple [[multicellular|multi-celled]] [[Eukaryota|eukaryote]]s. First radiation of [[dinoflagellate]]-like [[acritarch]]s. [[Grenville Orogeny]] tapers off in North America. [[Pan-African orogeny]] in Africa. Lake Ruker / Nimrod Orogeny in Antarctica, 1000&nbsp;±&nbsp;150 [[Year#SI_prefix_multipliers|Ma]]. Edmundian Orogeny (c. 920 850 [[Year#SI_prefix_multipliers|Ma]]), [[Gascoyne Complex]], Western Australia. [[Adelaide Geosyncline]] laid down on [[Australia (continent)|Australian Continent]], beginning of [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]] in that continent.
 
|style="background:{{period color|Tonian}}"| 1000<ref name="absolute-age" />
 
|style="background:{{period color|Tonian}}"| 1000<ref name="absolute-age" />
 
|-
 
|-
Line 412: Line 412:
 
|rowspan="4" style="background:{{period color|Paleoproterozoic}}"| [[Paleoproterozoic|Paleo-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|rowspan="4" style="background:{{period color|Paleoproterozoic}}"| [[Paleoproterozoic|Paleo-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|style="background:{{period color|Statherian}}"| [[Statherian]]
 
|style="background:{{period color|Statherian}}"| [[Statherian]]
|colspan="3"| First [[Eukaryote|complex single-celled life]]: [[protist]]s with nuclei. [[Columbia (supercontinent)|Columbia]] is the primordial supercontinent. Kimban Orogeny in Australian Continent ends. Yapungku Orogeny on [[Yilgarn craton]], in Western Australia. Mangaroon Orogeny, 1680&ndash;1620 [[Year#SI_prefix_multipliers|Ma]], on the [[Gascoyne Complex]] in Western Australia. Kararan Orogeny (1650-[[Year#SI_prefix_multipliers|Ma]]), Gawler Craton, [[South Australia]].
+
|colspan="3"| First [[Eukaryote|complex single-celled life]]: [[protist]]s with nuclei. [[Columbia (supercontinent)|Columbia]] is the primordial supercontinent. Kimban Orogeny in Australian Continent ends. Yapungku Orogeny on [[Yilgarn craton]], in Western Australia. Mangaroon Orogeny, 1680&ndash;1620 [[Year#SI_prefix_multipliers|Ma]], on the [[Gascoyne Complex]] in Western Australia. Kararan Orogeny (1650– [[Year#SI_prefix_multipliers|Ma]]), Gawler Craton, [[South Australia]].
 
|style="background:{{period color|Statherian}}"| 1800<ref name="absolute-age" />
 
|style="background:{{period color|Statherian}}"| 1800<ref name="absolute-age" />
 
|-
 
|-
 
|style="background:{{period color|Orosirian}}"| [[Orosirian]]
 
|style="background:{{period color|Orosirian}}"| [[Orosirian]]
|colspan="3"| The [[Earth's atmosphere|atmosphere]] becomes [[oxygen]]ic. [[Vredefort crater|Vredefort]] and [[Sudbury Basin]] asteroid impacts. Much [[orogeny]]. [[Penokean orogeny|Penokean]] and [[Trans-Hudsonian Orogeny|Trans-Hudsonian Orogenies]] in North America. Early Ruker Orogeny in Antarctica, 2000 - 1700 [[Year#SI_prefix_multipliers|Ma]]. Glenburgh Orogeny, [[Gascoyne Complex|Glenburgh Terrane]], [[Australia (Continent)|Australian Continent]] [[circa|c.]] 2005–1920 [[Year#SI prefix multipliers|Ma]]. Kimban Orogeny, [[Gawler craton]] in Australian Continent begins.
+
|colspan="3"| The [[Earth's atmosphere|atmosphere]] becomes [[oxygen]]ic. [[Vredefort crater|Vredefort]] and [[Sudbury Basin]] asteroid impacts. Much [[orogeny]]. [[Penokean orogeny|Penokean]] and [[Trans-Hudsonian Orogeny|Trans-Hudsonian Orogenies]] in North America. Early Ruker Orogeny in Antarctica, 2000–1700 [[Year#SI_prefix_multipliers|Ma]]. Glenburgh Orogeny, [[Gascoyne Complex|Glenburgh Terrane]], [[Australia (Continent)|Australian Continent]] [[circa|c.]] 2005–1920 [[Year#SI prefix multipliers|Ma]]. Kimban Orogeny, [[Gawler craton]] in Australian Continent begins.
 
|style="background:{{period color|Orosirian}}"| 2050<ref name="absolute-age" />
 
|style="background:{{period color|Orosirian}}"| 2050<ref name="absolute-age" />
 
|-
 
|-
Line 433: Line 433:
 
|-
 
|-
 
|style="background:{{period color|Mesoarchean}}"| [[Mesoarchean]]<ref name="Precambrian-Time" />
 
|style="background:{{period color|Mesoarchean}}"| [[Mesoarchean]]<ref name="Precambrian-Time" />
|colspan="4"| First [[stromatolite]]s (probably [[colony (biology)|colonial]] [[cyanobacteria]]). Oldest [[macrofossil]]s. Humboldt Orogeny in Antarctica. [[Blake River Megacaldera Complex]] begins to form in present-day [[Ontario]] and [[Quebec]], ends by roughly 2696[[Year#SI_prefix_multipliers|Ma]].
+
|colspan="4"| First [[stromatolite]]s (probably [[colony (biology)|colonial]] [[cyanobacteria]]). Oldest [[macrofossil]]s. Humboldt Orogeny in Antarctica. [[Blake River Megacaldera Complex]] begins to form in present-day [[Ontario]] and [[Quebec]], ends by roughly 2696 [[Year#SI_prefix_multipliers|Ma]].
 
|style="background:{{period color|Mesoarchean}}"| 3200<ref name="absolute-age" />
 
|style="background:{{period color|Mesoarchean}}"| 3200<ref name="absolute-age" />
 
|-
 
|-
 
|style="background:{{period color|Paleoarchean}}"| [[Paleoarchean]]<ref name="Precambrian-Time" />
 
|style="background:{{period color|Paleoarchean}}"| [[Paleoarchean]]<ref name="Precambrian-Time" />
|colspan="4"| First known [[phototroph|oxygen-producing]] [[bacteria]]. Oldest definitive [[microfossils]]. Oldest [[craton]]s on Earth (such as the [[Canadian Shield]] and the [[Pilbara Craton]]) may have formed during this period<ref name="Oldest-craton">The age of the oldest measurable [[craton]], or [[continental crust]], is dated to 3600–3800 Ma</ref>. Rayner Orogeny in Antarctica.
+
|colspan="4"| First known [[phototroph|oxygen-producing]] [[bacteria]]. Oldest definitive [[microfossils]]. Oldest [[craton]]s on Earth (such as the [[Canadian Shield]] and the [[Pilbara Craton]]) may have formed during this period.<ref name="Oldest-craton">The age of the oldest measurable [[craton]], or [[continental crust]], is dated to 3600–3800 Ma</ref> Rayner Orogeny in Antarctica.
 
|style="background:{{period color|Paleoarchean}}"| 3600<ref name="absolute-age" />
 
|style="background:{{period color|Paleoarchean}}"| 3600<ref name="absolute-age" />
 
|-
 
|-
Line 446: Line 446:
 
|rowspan="4" style="background:{{period color|Hadean}}"| [[Hadean]]<br /><ref name="Precambrian-Time" /><ref name="hadeon-not-formal">Though commonly used, the [[Hadean]] is not a formal eon and no lower bound for the Archean and Eoarchean have been agreed upon. The Hadean has also sometimes been called the Priscoan or the Azoic. Sometimes, the Hadean can be found to be subdivided according to the [[lunar geologic time scale]]. These eras include the [[Cryptic era|Cryptic]] and [[Basin Groups]] (which are subdivisions of the [[Pre-Nectarian]] era), [[Nectarian]], and [[Early Imbrian]] units.</ref>
 
|rowspan="4" style="background:{{period color|Hadean}}"| [[Hadean]]<br /><ref name="Precambrian-Time" /><ref name="hadeon-not-formal">Though commonly used, the [[Hadean]] is not a formal eon and no lower bound for the Archean and Eoarchean have been agreed upon. The Hadean has also sometimes been called the Priscoan or the Azoic. Sometimes, the Hadean can be found to be subdivided according to the [[lunar geologic time scale]]. These eras include the [[Cryptic era|Cryptic]] and [[Basin Groups]] (which are subdivisions of the [[Pre-Nectarian]] era), [[Nectarian]], and [[Early Imbrian]] units.</ref>
 
|style="background:{{period color|Hadean}}"| [[Early Imbrian]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names">These unit names were taken from the [[Lunar geologic timescale]] and refer to geologic events that did not occur on Earth. Their use for Earth geology is unofficial. Note that their start times do not dovetail perfectly with the later, terrestrially defined boundaries.</ref>
 
|style="background:{{period color|Hadean}}"| [[Early Imbrian]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names">These unit names were taken from the [[Lunar geologic timescale]] and refer to geologic events that did not occur on Earth. Their use for Earth geology is unofficial. Note that their start times do not dovetail perfectly with the later, terrestrially defined boundaries.</ref>
|colspan="4"| Indirect [[photosynthetic]] evidence (e.g., [[kerogen]]) of primordial life. This era overlaps the end of the [[Late Heavy Bombardment]] of the [[inner solar system|inner]] [[solar system]].
+
|colspan="4"| Indirect [[photosynthetic]] evidence (e.g., [[kerogen]]) of primordial life. This era overlaps the end of the [[Late Heavy Bombardment]] of the [[inner solar system|inner]] [[solar system]].
 
|style="background:{{period color|Hadean}}"| c.4100
 
|style="background:{{period color|Hadean}}"| c.4100
 
|-
 
|-
Line 454: Line 454:
 
|-
 
|-
 
|style="background:{{period color|Hadean}}"| [[Basin Groups]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
 
|style="background:{{period color|Hadean}}"| [[Basin Groups]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
|colspan="4"| Oldest known rock (4030 [[Year#SI_prefix_multipliers|Ma]])<ref name="Oldest-rock">{{cite journal|doi=10.1007/s004100050465|title=Priscoan (4.00&ndash;4.03 Ga) orthogneisses from northwestern Canada|year=1999|author=Bowring, Samuel A.|journal=Contributions to Mineralogy and Petrology|volume=134|issue=1|pages=3|last2=Williams|first2=Ian S.|bibcode=1999CoMP..134....3B}} The oldest rock on Earth is the [[Acasta Gneiss]], and it dates to 4.03 Ga, located in the [[Northwest Territories]] of Canada.</ref>. The first [[organism|life form]]s and [[self-replication|self-replicating]] [[RNA]] [[molecule]]s evolve around 4000 [[Year#SI_prefix_multipliers|Ma]], after the [[Late Heavy Bombardment]] ends on Earth. [[Napier_Mountains|Napier]] Orogeny in Antarctica, 4000&nbsp;±&nbsp;200 [[Year#SI_prefix_multipliers|Ma]].
+
|colspan="4"| Oldest known rock (4030 [[Year#SI_prefix_multipliers|Ma]]).<ref name="Oldest-rock">{{cite journal|doi=10.1007/s004100050465|title=Priscoan (4.00&ndash;4.03 Ga) orthogneisses from northwestern Canada|year=1999|author=Bowring, Samuel A.|journal=Contributions to Mineralogy and Petrology|volume=134|issue=1|pages=3|last2=Williams|first2=Ian S.|bibcode=1999CoMP..134....3B}} The oldest rock on Earth is the [[Acasta Gneiss]], and it dates to 4.03 Ga, located in the [[Northwest Territories]] of Canada.</ref> The first [[organism|life form]]s and [[self-replication|self-replicating]] [[RNA]] [[molecule]]s evolve around 4000 [[Year#SI_prefix_multipliers|Ma]], after the [[Late Heavy Bombardment]] ends on Earth. [[Napier_Mountains|Napier]] Orogeny in Antarctica, 4000&nbsp;±&nbsp;200 [[Year#SI_prefix_multipliers|Ma]].
 
|style="background:{{period color|Hadean}}"| c.4500
 
|style="background:{{period color|Hadean}}"| c.4500
 
|-
 
|-
 
|style="background:{{period color|Hadean}}"| [[Cryptic era|Cryptic]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
 
|style="background:{{period color|Hadean}}"| [[Cryptic era|Cryptic]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
 
|colspan="4"| Oldest known [[mineral]] ([[Zircon]], 4404&nbsp;±&nbsp;8 [[Year#SI_prefix_multipliers|Ma]]).<ref name="geology-wisc-edu">[http://www.geology.wisc.edu/%7Evalley/zircons/Wilde2001Nature.pdf Geology.wisc.edu]</ref> Formation of [[Moon]] (4533 [[Year#SI_prefix_multipliers|Ma]]), probably from [[Giant_impact_hypothesis|giant impact]]. Formation of [[Earth]] (4567.17 to 4570 [[Year#SI_prefix_multipliers|Ma]])
 
|colspan="4"| Oldest known [[mineral]] ([[Zircon]], 4404&nbsp;±&nbsp;8 [[Year#SI_prefix_multipliers|Ma]]).<ref name="geology-wisc-edu">[http://www.geology.wisc.edu/%7Evalley/zircons/Wilde2001Nature.pdf Geology.wisc.edu]</ref> Formation of [[Moon]] (4533 [[Year#SI_prefix_multipliers|Ma]]), probably from [[Giant_impact_hypothesis|giant impact]]. Formation of [[Earth]] (4567.17 to 4570 [[Year#SI_prefix_multipliers|Ma]])
|style="background:{{period color|Hadean}}"| c.4567
+
|style="background:{{period color|Hadean}}"| c. 4567
 
|}</div>
 
|}</div>
 
<includeonly>
 
<includeonly>

Revision as of 17:49, 27 October 2014