Difference between revisions of "Template:Hex2dec/sandbox"
Jump to navigation
Jump to search
| Line 6: | Line 6: | ||
}} | }} | ||
|{{#expr: | |{{#expr: | ||
| − | {{ | + | {{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: fff |
| − | |||
|{{padleft:|1| fff }}=1 | |{{padleft:|1| fff }}=1 | ||
|{{padleft:|2| fff }}=2 | |{{padleft:|2| fff }}=2 | ||
| Line 19: | Line 18: | ||
|{{padleft:|10| fff }}=10 | |{{padleft:|10| fff }}=10 | ||
}} | }} | ||
| − | -1}}}} | + | -1}}+1}}| {{lc:fff}} |
| − | + | }} | |
| − | | {{#expr: {{#switch: fff | + | |{{padleft:| {{#expr: {{#switch: fff |
|{{padleft:|1| fff }}=1 | |{{padleft:|1| fff }}=1 | ||
|{{padleft:|2| fff }}=2 | |{{padleft:|2| fff }}=2 | ||
| Line 33: | Line 32: | ||
|{{padleft:|10| fff }}=10 | |{{padleft:|10| fff }}=10 | ||
}} | }} | ||
| − | - | + | -1}}| {{lc:fff}} |
| − | + | }}0=0 | |
| − | | {{#expr: {{#switch: fff | + | |{{padleft:| {{#expr: {{#switch: fff |
|{{padleft:|1| fff }}=1 | |{{padleft:|1| fff }}=1 | ||
|{{padleft:|2| fff }}=2 | |{{padleft:|2| fff }}=2 | ||
| Line 47: | Line 46: | ||
|{{padleft:|10| fff }}=10 | |{{padleft:|10| fff }}=10 | ||
}} | }} | ||
| − | - | + | -1}}| {{lc:fff}} |
| − | + | }}1=1 | |
| − | | {{#expr: {{#switch: fff | + | |{{padleft:| {{#expr: {{#switch: fff |
|{{padleft:|1| fff }}=1 | |{{padleft:|1| fff }}=1 | ||
|{{padleft:|2| fff }}=2 | |{{padleft:|2| fff }}=2 | ||
| Line 61: | Line 60: | ||
|{{padleft:|10| fff }}=10 | |{{padleft:|10| fff }}=10 | ||
}} | }} | ||
| − | - | + | -1}}| {{lc:fff}} |
| − | + | }}2=2 | |
| − | | {{#expr: {{#switch: fff | + | |{{padleft:| {{#expr: {{#switch: fff |
|{{padleft:|1| fff }}=1 | |{{padleft:|1| fff }}=1 | ||
|{{padleft:|2| fff }}=2 | |{{padleft:|2| fff }}=2 | ||
| Line 75: | Line 74: | ||
|{{padleft:|10| fff }}=10 | |{{padleft:|10| fff }}=10 | ||
}} | }} | ||
| − | - | + | -1}}| {{lc:fff}} |
| − | + | }}3=3 | |
| − | | {{#expr: {{#switch: fff | + | |{{padleft:| {{#expr: {{#switch: fff |
|{{padleft:|1| fff }}=1 | |{{padleft:|1| fff }}=1 | ||
|{{padleft:|2| fff }}=2 | |{{padleft:|2| fff }}=2 | ||
| Line 89: | Line 88: | ||
|{{padleft:|10| fff }}=10 | |{{padleft:|10| fff }}=10 | ||
}} | }} | ||
| − | - | + | -1}}| {{lc:fff}} |
| − | + | }}4=4 | |
| − | | {{#expr: {{#switch: fff | + | |{{padleft:| {{#expr: {{#switch: fff |
|{{padleft:|1| fff }}=1 | |{{padleft:|1| fff }}=1 | ||
|{{padleft:|2| fff }}=2 | |{{padleft:|2| fff }}=2 | ||
| Line 103: | Line 102: | ||
|{{padleft:|10| fff }}=10 | |{{padleft:|10| fff }}=10 | ||
}} | }} | ||
| − | - | + | -1}}| {{lc:fff}} |
| − | + | }}5=5 | |
| − | | {{#expr: {{#switch: fff | + | |{{padleft:| {{#expr: {{#switch: fff |
|{{padleft:|1| fff }}=1 | |{{padleft:|1| fff }}=1 | ||
|{{padleft:|2| fff }}=2 | |{{padleft:|2| fff }}=2 | ||
| Line 117: | Line 116: | ||
|{{padleft:|10| fff }}=10 | |{{padleft:|10| fff }}=10 | ||
}} | }} | ||
| − | -8}}}}*268435456 | + | -1}}| {{lc:fff}} |
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -1}}| {{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -1}}| {{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -1}}| {{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -1}}| {{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -1}}| {{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -1}}| {{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -1}}| {{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -1}}| {{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -1}}| {{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }} | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}+1}}| {{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -2}}| {{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*16 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}+1}}| {{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -3}}| {{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*256 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}+1}}| {{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -4}}| {{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*4096 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}+1}}| {{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -5}}| {{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*65536 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}+1}}| {{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -6}}| {{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*1048576 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}+1}}| {{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -7}}| {{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*16777216 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}+1}}| {{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: fff | ||
| + | |{{padleft:|1| fff }}=1 | ||
| + | |{{padleft:|2| fff }}=2 | ||
| + | |{{padleft:|3| fff }}=3 | ||
| + | |{{padleft:|4| fff }}=4 | ||
| + | |{{padleft:|5| fff }}=5 | ||
| + | |{{padleft:|6| fff }}=6 | ||
| + | |{{padleft:|7| fff }}=7 | ||
| + | |{{padleft:|8| fff }}=8 | ||
| + | |{{padleft:|9| fff }}=9 | ||
| + | |{{padleft:|10| fff }}=10 | ||
| + | }} | ||
| + | -8}}| {{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*268435456 | ||
}} | }} | ||
|0 | |0 | ||
| Line 125: | Line 1,933: | ||
}} | }} | ||
|{{#expr: | |{{#expr: | ||
| − | {{ | + | {{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: 0xfff |
| − | | {{#expr: {{#switch: 0xfff | + | |{{padleft:|1| 0xfff }}=1 |
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}+1}}| 0x{{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -1}}| 0x{{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }} | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}+1}}| 0x{{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -2}}| 0x{{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*16 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}+1}}| 0x{{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -3}}| 0x{{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*256 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}+1}}| 0x{{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -4}}| 0x{{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*4096 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}+1}}| 0x{{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -5}}| 0x{{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*65536 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}+1}}| 0x{{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -6}}| 0x{{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*1048576 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}+1}}| 0x{{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}8=8 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}9=9 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}A=10 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}B=11 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}C=12 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}D=13 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}E=14 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -7}}| 0x{{lc:fff}} | ||
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*16777216 | ||
| + | +{{#switch:{{padleft:|{{#expr: {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -8}}+1}}| 0x{{lc:fff}} | ||
| + | }} | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -8}}| 0x{{lc:fff}} | ||
| + | }}0=0 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -8}}| 0x{{lc:fff}} | ||
| + | }}1=1 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -8}}| 0x{{lc:fff}} | ||
| + | }}2=2 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -8}}| 0x{{lc:fff}} | ||
| + | }}3=3 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -8}}| 0x{{lc:fff}} | ||
| + | }}4=4 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -8}}| 0x{{lc:fff}} | ||
| + | }}5=5 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -8}}| 0x{{lc:fff}} | ||
| + | }}6=6 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
| + | |{{padleft:|1| 0xfff }}=1 | ||
| + | |{{padleft:|2| 0xfff }}=2 | ||
| + | |{{padleft:|3| 0xfff }}=3 | ||
| + | |{{padleft:|4| 0xfff }}=4 | ||
| + | |{{padleft:|5| 0xfff }}=5 | ||
| + | |{{padleft:|6| 0xfff }}=6 | ||
| + | |{{padleft:|7| 0xfff }}=7 | ||
| + | |{{padleft:|8| 0xfff }}=8 | ||
| + | |{{padleft:|9| 0xfff }}=9 | ||
| + | |{{padleft:|10| 0xfff }}=10 | ||
| + | }} | ||
| + | -8}}| 0x{{lc:fff}} | ||
| + | }}7=7 | ||
| + | |{{padleft:| {{#expr: {{#switch: 0xfff | ||
|{{padleft:|1| 0xfff }}=1 | |{{padleft:|1| 0xfff }}=1 | ||
|{{padleft:|2| 0xfff }}=2 | |{{padleft:|2| 0xfff }}=2 | ||
| Line 138: | Line 3,751: | ||
|{{padleft:|10| 0xfff }}=10 | |{{padleft:|10| 0xfff }}=10 | ||
}} | }} | ||
| − | - | + | -8}}| 0x{{lc:fff}} |
| − | + | }}8=8 | |
| − | | {{#expr: {{#switch: 0xfff | + | |{{padleft:| {{#expr: {{#switch: 0xfff |
|{{padleft:|1| 0xfff }}=1 | |{{padleft:|1| 0xfff }}=1 | ||
|{{padleft:|2| 0xfff }}=2 | |{{padleft:|2| 0xfff }}=2 | ||
| Line 152: | Line 3,765: | ||
|{{padleft:|10| 0xfff }}=10 | |{{padleft:|10| 0xfff }}=10 | ||
}} | }} | ||
| − | - | + | -8}}| 0x{{lc:fff}} |
| − | + | }}9=9 | |
| − | | {{#expr: {{#switch: 0xfff | + | |{{padleft:| {{#expr: {{#switch: 0xfff |
|{{padleft:|1| 0xfff }}=1 | |{{padleft:|1| 0xfff }}=1 | ||
|{{padleft:|2| 0xfff }}=2 | |{{padleft:|2| 0xfff }}=2 | ||
| Line 166: | Line 3,779: | ||
|{{padleft:|10| 0xfff }}=10 | |{{padleft:|10| 0xfff }}=10 | ||
}} | }} | ||
| − | - | + | -8}}| 0x{{lc:fff}} |
| − | + | }}A=10 | |
| − | | {{#expr: {{#switch: 0xfff | + | |{{padleft:| {{#expr: {{#switch: 0xfff |
|{{padleft:|1| 0xfff }}=1 | |{{padleft:|1| 0xfff }}=1 | ||
|{{padleft:|2| 0xfff }}=2 | |{{padleft:|2| 0xfff }}=2 | ||
| Line 180: | Line 3,793: | ||
|{{padleft:|10| 0xfff }}=10 | |{{padleft:|10| 0xfff }}=10 | ||
}} | }} | ||
| − | - | + | -8}}| 0x{{lc:fff}} |
| − | + | }}B=11 | |
| − | | {{#expr: {{#switch: 0xfff | + | |{{padleft:| {{#expr: {{#switch: 0xfff |
|{{padleft:|1| 0xfff }}=1 | |{{padleft:|1| 0xfff }}=1 | ||
|{{padleft:|2| 0xfff }}=2 | |{{padleft:|2| 0xfff }}=2 | ||
| Line 194: | Line 3,807: | ||
|{{padleft:|10| 0xfff }}=10 | |{{padleft:|10| 0xfff }}=10 | ||
}} | }} | ||
| − | - | + | -8}}| 0x{{lc:fff}} |
| − | + | }}C=12 | |
| − | | {{#expr: {{#switch: 0xfff | + | |{{padleft:| {{#expr: {{#switch: 0xfff |
|{{padleft:|1| 0xfff }}=1 | |{{padleft:|1| 0xfff }}=1 | ||
|{{padleft:|2| 0xfff }}=2 | |{{padleft:|2| 0xfff }}=2 | ||
| Line 208: | Line 3,821: | ||
|{{padleft:|10| 0xfff }}=10 | |{{padleft:|10| 0xfff }}=10 | ||
}} | }} | ||
| − | - | + | -8}}| 0x{{lc:fff}} |
| − | + | }}D=13 | |
| − | | {{#expr: {{#switch: 0xfff | + | |{{padleft:| {{#expr: {{#switch: 0xfff |
|{{padleft:|1| 0xfff }}=1 | |{{padleft:|1| 0xfff }}=1 | ||
|{{padleft:|2| 0xfff }}=2 | |{{padleft:|2| 0xfff }}=2 | ||
| Line 222: | Line 3,835: | ||
|{{padleft:|10| 0xfff }}=10 | |{{padleft:|10| 0xfff }}=10 | ||
}} | }} | ||
| − | - | + | -8}}| 0x{{lc:fff}} |
| − | + | }}E=14 | |
| − | | {{#expr: {{#switch: 0xfff | + | |{{padleft:| {{#expr: {{#switch: 0xfff |
|{{padleft:|1| 0xfff }}=1 | |{{padleft:|1| 0xfff }}=1 | ||
|{{padleft:|2| 0xfff }}=2 | |{{padleft:|2| 0xfff }}=2 | ||
| Line 236: | Line 3,849: | ||
|{{padleft:|10| 0xfff }}=10 | |{{padleft:|10| 0xfff }}=10 | ||
}} | }} | ||
| − | -8}}}}*268435456 | + | -8}}| 0x{{lc:fff}} |
| + | }}F=15 | ||
| + | |#default=0 | ||
| + | }}*268435456 | ||
}} | }} | ||
|0 | |0 | ||
Revision as of 01:13, 9 November 2012
0