Difference between revisions of "Template:List data structure comparison"
Jump to navigation
Jump to search
(The last element is known in most implementations (keeping a tail pointer is cheap)) |
(Increase table width to 100% to avoid article reflows or cramped content.) |
||
| Line 1: | Line 1: | ||
| − | + | {|class="wikitable" | |
| − | {|class="wikitable | ||
|+ Comparison of list data structures | |+ Comparison of list data structures | ||
! | ! | ||
| Line 57: | Line 56: | ||
|style="background:#ffffdd"|Θ({{sqrt|''n''}}) | |style="background:#ffffdd"|Θ({{sqrt|''n''}}) | ||
|} | |} | ||
| − | |||
<noinclude>{{Template reference list}}</noinclude> | <noinclude>{{Template reference list}}</noinclude> | ||
Revision as of 12:55, 26 May 2017
| Linked list | Array | Dynamic array | Balanced tree | Random access list | hashed array tree | |
|---|---|---|---|---|---|---|
| Indexing | Θ(n) | Θ(1) | Θ(1) | Θ(log n) | Θ(log n)[1] | Θ(1) |
| Insert/delete at beginning | Θ(1) | N/A | Θ(n) | Θ(log n) | Θ(1) | Θ(n) |
| Insert/delete at end | Θ(1) when last element is known; Θ(n) when last element is unknown |
N/A | Θ(1) amortized | Θ(log n) | Θ(log n) updating | Θ(1) amortized |
| Insert/delete in middle | search time + Θ(1)[2][3][4] | N/A | Θ(n) | Θ(log n) | Θ(log n) updating | Θ(n) |
| Wasted space (average) | Θ(n) | 0 | Θ(n)[5] | Θ(n) | Θ(n) | Θ(Template:Sqrt) |
References
- ↑ Chris Okasaki (1995). "Purely Functional Random-Access Lists". Proceedings of the Seventh International Conference on Functional Programming Languages and Computer Architecture: 86–95. doi:10.1145/224164.224187.
- ↑ Gerald Kruse. CS 240 Lecture Notes: Linked Lists Plus: Complexity Trade-offs. Juniata College. Spring 2008.
- ↑ Day 1 Keynote - Bjarne Stroustrup: C++11 Style at GoingNative 2012 on channel9.msdn.com from minute 45 or foil 44
- ↑ Number crunching: Why you should never, ever, EVER use linked-list in your code again at kjellkod.wordpress.com
- ↑ Brodnik, Andrej; Carlsson, Svante; Sedgewick, Robert; Munro, JI; Demaine, ED (1999), Resizable Arrays in Optimal Time and Space (Technical Report CS-99-09) (PDF), Department of Computer Science, University of Waterloo