Difference between revisions of "Template:Classes of natural numbers"
Jump to navigation
Jump to search
Template documentation
| Line 135: | Line 135: | ||
}} | }} | ||
| − | |group8 = [[ | + | |group8 = [[Number base|Base]]-dependent<br/> numbers |
| − | |list8 = | + | |list8 = {{Navbox|subgroup |
| − | * [[ | + | |group1 = [[Numerical digit|Digit]]-based [[arithmetic dynamics]] |
| − | * [[ | + | |list1 = |
| − | * [[ | + | * [[Digit sum]] |
| − | * [[ | + | * [[Digital root]] |
| − | * [[ | + | ** [[Multiplicative digital root|Multiplicative]] |
| − | * [[ | + | * [[Dudeney number|Dudeney]] |
| − | * [[ | + | * [[Factorion]] |
| − | * [[ | + | * [[Happy number|Happy]] |
| − | * [[ | + | * [[Lychrel number|Lychrel]] |
| − | * [[ | + | * [[Meertens number|Meertens]] |
| + | * [[Missing-digit sum]] | ||
| + | * [[Narcissistic number|Narcissistic]] | ||
| + | * [[Perfect digit-to-digit invariant]] | ||
| + | * [[Perfect digital invariant]] | ||
| + | * [[Persistence of a number|Persistence]] | ||
| + | ** [[Additive persistence|Additive]] | ||
| + | ** [[Multiplicative persistence|Multiplicative]] | ||
| + | * [[Self number|Self]] | ||
| + | * [[Sum-product number|Sum-product]] | ||
| + | |||
| + | |group2 = Digit-composition related | ||
| + | |list2 = | ||
| + | * [[Palindromic number|Palindromic]] | ||
| + | * [[Pandigital number|Pandigital]] | ||
| + | * [[Repdigit]] | ||
| + | * [[Repunit]] | ||
| + | * [[Self-descriptive number|Self-descriptive]] | ||
| + | * [[Smarandache–Wellin number|Smarandache–Wellin]] | ||
| + | * [[Strictly non-palindromic number|Strictly non-palindromic]] | ||
| + | * [[Undulating number|Undulating]] | ||
| + | |||
| + | |group3 = Digit-[[permutation]] related | ||
| + | |list3 = | ||
| + | * [[Cyclic number|Cyclic]] | ||
| + | * [[Digit-reassembly number|Digit-reassembly]] | ||
| + | * [[Parasitic number|Parasitic]] | ||
| + | * [[Primeval number|Primeval]] | ||
| + | * [[Transposable integer|Transposable]] | ||
| + | |||
| + | |group4 = [[Divisor]] related | ||
| + | |list4 = | ||
| + | * [[Equidigital number|Equidigital]] | ||
| + | * [[Extravagant number|Extravagant]] | ||
| + | * [[Frugal number|Frugal]] | ||
| + | * [[Harshad number|Harshad]] | ||
| + | * [[Pernicious number|Pernicious]] | ||
| + | * [[Polydivisible number|Polydivisible]] | ||
| + | * [[Vampire number|Vampire]] | ||
| + | |||
| + | |group5 = [[P-adic number]] related | ||
| + | |list5 = | ||
| + | * [[Automorphic number|Automorphic]] | ||
| + | |||
| + | |group6 = Other | ||
| + | |list6 = | ||
| + | * [[Friedman number|Friedman]] | ||
| + | * [[Kaprekar number|Kaprekar]] | ||
| + | * [[Keith number|Keith]] | ||
| + | }} | ||
|group9 = Combinatorial<br/> numbers | |group9 = Combinatorial<br/> numbers | ||
| Line 165: | Line 214: | ||
* [[Schröder–Hipparchus number|Schröder–Hipparchus]] | * [[Schröder–Hipparchus number|Schröder–Hipparchus]] | ||
| − | |group10 = [[Arithmetic function]]s | + | |group10 = [[Pseudoprime]]s |
| − | | | + | |list10 = |
| + | * [[Carmichael number]] | ||
| + | * [[Catalan pseudoprime]] | ||
| + | * [[Elliptic pseudoprime]] | ||
| + | * [[Euler pseudoprime]] | ||
| + | * [[Euler–Jacobi pseudoprime]] | ||
| + | * [[Fermat pseudoprime]] | ||
| + | * [[Frobenius pseudoprime]] | ||
| + | * [[Lucas pseudoprime]] | ||
| + | * [[Somer–Lucas pseudoprime]] | ||
| + | * [[Strong pseudoprime]] | ||
| + | |||
| + | |group11 = [[Arithmetic function]]s | ||
| + | |list11 = {{Navbox|subgroup | ||
|group1 = By properties of [[Divisor function|σ(''n'')]] | |group1 = By properties of [[Divisor function|σ(''n'')]] | ||
|list1 = | |list1 = | ||
| Line 219: | Line 281: | ||
}} | }} | ||
| − | | | + | |group12 = Dividing a quotient |
| − | | | + | |list12 = |
* [[Wieferich prime#Wieferich numbers|Wieferich]] | * [[Wieferich prime#Wieferich numbers|Wieferich]] | ||
* [[Wall–Sun–Sun prime|Wall–Sun–Sun]] | * [[Wall–Sun–Sun prime|Wall–Sun–Sun]] | ||
| Line 226: | Line 288: | ||
* [[Wilson prime#Wilson numbers|Wilson]] | * [[Wilson prime#Wilson numbers|Wilson]] | ||
| − | | | + | |group13 = Other [[prime factor]]<br/> or [[divisor]] related<br/> numbers |
| − | | | + | |list13 = |
* [[Blum integer|Blum]] | * [[Blum integer|Blum]] | ||
* [[Erdős–Nicolas number|Erdős–Nicolas]] | * [[Erdős–Nicolas number|Erdős–Nicolas]] | ||
| Line 244: | Line 306: | ||
* [[Super-Poulet number|Super-Poulet]] | * [[Super-Poulet number|Super-Poulet]] | ||
* [[Zeisel number|Zeisel]] | * [[Zeisel number|Zeisel]] | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|group14 = Generated<br/> via a [[Sieve theory|sieve]] | |group14 = Generated<br/> via a [[Sieve theory|sieve]] | ||
Revision as of 20:12, 7 October 2019
Initial visibility: currently defaults to autocollapse
To set this template's initial visibility, the |state= parameter may be used:
|state=collapsed:{{Classes of natural numbers|state=collapsed}}to show the template collapsed, i.e., hidden apart from its title bar|state=expanded:{{Classes of natural numbers|state=expanded}}to show the template expanded, i.e., fully visible|state=autocollapse:{{Classes of natural numbers|state=autocollapse}}
If the |state= parameter in the template on this page is not set, the template's initial visibility is taken from the |default= parameter in the Collapsible option template. For the template on this page, that currently evaluates to autocollapse.
See also
- {{Divisor classes}}
- {{Prime number classes}}
- {{Series (mathematics)}}
| Editors can experiment in this template's sandbox (edit | diff) and testcases (create) pages. Subpages of this template. |