Difference between revisions of "Template:Elastic moduli"
Jump to navigation
Jump to search
imported>DASHBot m (Bot: Bypassing redirects in navboxes, in order to improve article navigability;details/shutoff) |
|||
| Line 105: | Line 105: | ||
[[eo:Ŝablono:Elastaj moduloj]] | [[eo:Ŝablono:Elastaj moduloj]] | ||
[[es:Plantilla:Módulo de elasticidad]] | [[es:Plantilla:Módulo de elasticidad]] | ||
| − | </ | + | </include> |
Revision as of 18:20, 16 November 2010
| Conversion formulas | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas. | ||||||||||
| <math>(\lambda,\,G)</math> | <math>(E,\,G)</math> | <math>(K,\,\lambda)</math> | <math>(K,\,G)</math> | <math>(\lambda,\,\nu)</math> | <math>(G,\,\nu)</math> | <math>(E,\,\nu)</math> | <math>(K,\, \nu)</math> | <math>(K,\,E)</math> | <math>(M,\,G)</math> | |
| <math>K=\,</math> | <math>\lambda+ \tfrac{2G}{3}</math> | <math>\tfrac{EG}{3(3G-E)}</math> | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> | <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> | <math>\tfrac{E}{3(1-2\nu)}</math> | <math>M - \tfrac{4G}{3}</math> | ||||
| <math>E=\, </math> | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> | <math>\tfrac{9KG}{3K+G}</math> | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> | <math>2G(1+\nu)\,</math> | <math>3K(1-2\nu)\,</math> | <math>\tfrac{G(3M-4G)}{M-G}</math> | |||
| <math>\lambda=\,</math> | <math>\tfrac{G(E-2G)}{3G-E}</math> | <math>K-\tfrac{2G}{3}</math> | <math>\tfrac{2 G \nu}{1-2\nu}</math> | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> | <math>\tfrac{3K\nu}{1+\nu}</math> | <math>\tfrac{3K(3K-E)}{9K-E}</math> | <math>M - 2G\,</math> | |||
| <math>G=\, </math> | <math>\tfrac{3(K-\lambda)}{2}</math> | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> | <math>\tfrac{E}{2(1+\nu)}</math> | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> | <math>\tfrac{3KE}{9K-E}</math> | |||||
| <math>\nu=\,</math> | <math>\tfrac{\lambda}{2(\lambda + G)}</math> | <math>\tfrac{E}{2G}-1</math> | <math>\tfrac{\lambda}{3K-\lambda}</math> | <math>\tfrac{3K-2G}{2(3K+G)}</math> | <math>\tfrac{3K-E}{6K}</math> | <math>\tfrac{M - 2G}{2M - 2G}</math> | ||||
| <math>M=\,</math> | <math>\lambda+2G\,</math> | <math>\tfrac{G(4G-E)}{3G-E}</math> | <math>3K-2\lambda\,</math> | <math>K+\tfrac{4G}{3}</math> | <math>\tfrac{\lambda(1-\nu)}{\nu}</math> | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> | <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> | <math>\tfrac{3K(1-\nu)}{1+\nu}</math> | <math>\tfrac{3K(3K+E)}{9K-E}</math> | |
The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.
References
- G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4
da:Skabelon:Parametre for materialers elasticitet eo:Ŝablono:Elastaj moduloj es:Plantilla:Módulo de elasticidad </include>