Difference between revisions of "Template:Elastic moduli"
Jump to navigation
Jump to search
imported>DanimothWiki m (Change positive/negative phrase with equivalent math formula) |
imported>DanimothWiki m (Use proper latex symbols for [greater or equal] and [less or equal]) |
||
| Line 124: | Line 124: | ||
| align=center | <p> <math>S=\pm\sqrt{E^2+9M^2-10EM}</math><br /> | | align=center | <p> <math>S=\pm\sqrt{E^2+9M^2-10EM}</math><br /> | ||
There are two valid solutions.<br /> | There are two valid solutions.<br /> | ||
| − | The plus sign | + | The plus sign leads to <math>\nu\geq 0</math>.<br /> |
| − | The minus sign | + | The minus sign leads to <math>\nu\leq 0</math>.<br /> |
|- | |- | ||
Revision as of 11:53, 28 May 2014
| Conversion formulas | |||||||
|---|---|---|---|---|---|---|---|
| Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas. | |||||||
| <math>K=\,</math> | <math>E=\, </math> | <math>\lambda=\,</math> | <math>G=\, </math> | <math>\nu=\,</math> | <math>M=\,</math> | Notes | |
| <math>(K,\,E)</math> | <math>K</math> | <math>E</math> | <math>\tfrac{3K(3K-E)}{9K-E}</math> | <math>\tfrac{3KE}{9K-E}</math> | <math>\tfrac{3K-E}{6K}</math> | <math>\tfrac{3K(3K+E)}{9K-E}</math> | |
| <math>(K,\,\lambda)</math> | <math>K</math> | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> | <math>\lambda</math> | <math>\tfrac{3(K-\lambda)}{2}</math> | <math>\tfrac{\lambda}{3K-\lambda}</math> | <math>3K-2\lambda\,</math> | |
| <math>(K,\,G)</math> | <math>K</math> | <math>\tfrac{9KG}{3K+G}</math> | <math>K-\tfrac{2G}{3}</math> | <math>G</math> | <math>\tfrac{3K-2G}{2(3K+G)}</math> | <math>K+\tfrac{4G}{3}</math> | |
| <math>(K,\,\nu)</math> | <math>K</math> | <math>3K(1-2\nu)\,</math> | <math>\tfrac{3K\nu}{1+\nu}</math> | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> | <math>\nu</math> | <math>\tfrac{3K(1-\nu)}{1+\nu}</math> | |
| <math>(K,\,M)</math> | <math>K</math> | <math>\tfrac{9K(M-K)}{3K+M}</math> | <math>\tfrac{3K-M}{2}</math> | <math>\tfrac{3(M-K)}{4}</math> | <math>\tfrac{3K-M}{3K+M}</math> | <math>M</math> | |
| <math>(E,\,\lambda)</math> | <math>\tfrac{E + 3\lambda + R}{6}</math> | <math>E</math> | <math>\lambda</math> | <math>\tfrac{E-3\lambda+R}{4}</math> | <math>\tfrac{2\lambda}{E+\lambda+R}</math> | <math>\tfrac{E-\lambda+R}{2}</math> | <math>R=\sqrt{E^2+9\lambda^2 + 2E\lambda}</math> |
| <math>(E,\,G)</math> | <math>\tfrac{EG}{3(3G-E)}</math> | <math>E</math> | <math>\tfrac{G(E-2G)}{3G-E}</math> | <math>G</math> | <math>\tfrac{E}{2G}-1</math> | <math>\tfrac{G(4G-E)}{3G-E}</math> | |
| <math>(E,\,\nu)</math> | <math>\tfrac{E}{3(1-2\nu)}</math> | <math>E</math> | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> | <math>\tfrac{E}{2(1+\nu)}</math> | <math>\nu</math> | <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> | |
| <math>(E,\,M)</math> | <math>\tfrac{3M-E+S}{6}</math> | <math>E</math> | <math>\tfrac{M-E+S}{4}</math> | <math>\tfrac{3M+E-S}{8}</math> | <math>\tfrac{E-M+S}{4M}</math> | <math>M</math> | <math>S=\pm\sqrt{E^2+9M^2-10EM}</math> There are two valid solutions. |
| <math>(\lambda,\,G)</math> | <math>\lambda+ \tfrac{2G}{3}</math> | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> | <math>\lambda</math> | <math>G</math> | <math>\tfrac{\lambda}{2(\lambda + G)}</math> | <math>\lambda+2G\,</math> | |
| <math>(\lambda,\,\nu)</math> | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> | <math>\lambda</math> | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> | <math>\nu</math> | <math>\tfrac{\lambda(1-\nu)}{\nu}</math> | Cannot be used when <math>\nu=0 \Leftrightarrow \lambda=0</math> |
| <math>(\lambda,\,M)</math> | <math>\tfrac{M + 2\lambda}{3}</math> | <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math> | <math>\lambda</math> | <math>\tfrac{M-\lambda}{2}</math> | <math>\tfrac{\lambda}{M+\lambda}</math> | <math>M</math> | |
| <math>(G,\,\nu)</math> | <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> | <math>2G(1+\nu)\,</math> | <math>\tfrac{2 G \nu}{1-2\nu}</math> | <math>G</math> | <math>\nu</math> | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> | |
| <math>(G,\,M)</math> | <math>M - \tfrac{4G}{3}</math> | <math>\tfrac{G(3M-4G)}{M-G}</math> | <math>M - 2G\,</math> | <math>G</math> | <math>\tfrac{M - 2G}{2M - 2G}</math> | <math>M</math> | |
| <math>(\nu,\,M)</math> | <math>\tfrac{M(1+\nu)}{3(1-\nu)}</math> | <math>\tfrac{M(1+\nu)(1-2\nu)}{1-\nu}</math> | <math>\tfrac{M \nu}{1-\nu}</math> | <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math> | <math>\nu</math> | <math>M</math> | |
The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.
References
- G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4