Difference between revisions of "Template:Elastic moduli"
Jump to navigation
Jump to search
imported>ShakespeareFan00 |
(Made table more readable by removing entries of the form K=K which nobody will be looking for.) |
||
| Line 28: | Line 28: | ||
|- | |- | ||
| style="text-align:center;" | <math>(K,\,E)</math> | | style="text-align:center;" | <math>(K,\,E)</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{3K(3K-E)}{9K-E}</math> | | style="text-align:center;" | <math>\tfrac{3K(3K-E)}{9K-E}</math> | ||
| style="text-align:center;" | <math>\tfrac{3KE}{9K-E}</math> | | style="text-align:center;" | <math>\tfrac{3KE}{9K-E}</math> | ||
| Line 39: | Line 39: | ||
| style="text-align:center;" | <math>(K,\,\lambda)</math> | | style="text-align:center;" | <math>(K,\,\lambda)</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> | | style="text-align:center;" | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{3(K-\lambda)}{2}</math> | | style="text-align:center;" | <math>\tfrac{3(K-\lambda)}{2}</math> | ||
| style="text-align:center;" | <math>\tfrac{\lambda}{3K-\lambda}</math> | | style="text-align:center;" | <math>\tfrac{\lambda}{3K-\lambda}</math> | ||
| Line 50: | Line 50: | ||
| style="text-align:center;" | <math>(K,\,G)</math> | | style="text-align:center;" | <math>(K,\,G)</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{9KG}{3K+G}</math> | | style="text-align:center;" | <math>\tfrac{9KG}{3K+G}</math> | ||
| style="text-align:center;" | <math>K-\tfrac{2G}{3}</math> | | style="text-align:center;" | <math>K-\tfrac{2G}{3}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{3K-2G}{2(3K+G)}</math> | | style="text-align:center;" | <math>\tfrac{3K-2G}{2(3K+G)}</math> | ||
| style="text-align:center;" | <math>K+\tfrac{4G}{3}</math> | | style="text-align:center;" | <math>K+\tfrac{4G}{3}</math> | ||
| Line 61: | Line 61: | ||
| style="text-align:center;" | <math>(K,\,\nu)</math> | | style="text-align:center;" | <math>(K,\,\nu)</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>3K(1-2\nu)\,</math> | | style="text-align:center;" | <math>3K(1-2\nu)\,</math> | ||
| style="text-align:center;" | <math>\tfrac{3K\nu}{1+\nu}</math> | | style="text-align:center;" | <math>\tfrac{3K\nu}{1+\nu}</math> | ||
| style="text-align:center;" | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> | | style="text-align:center;" | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{3K(1-\nu)}{1+\nu}</math> | | style="text-align:center;" | <math>\tfrac{3K(1-\nu)}{1+\nu}</math> | ||
| | | | ||
| Line 72: | Line 72: | ||
| style="text-align:center;" | <math>(K,\,M)</math> | | style="text-align:center;" | <math>(K,\,M)</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{9K(M-K)}{3K+M}</math> | | style="text-align:center;" | <math>\tfrac{9K(M-K)}{3K+M}</math> | ||
| style="text-align:center;" | <math>\tfrac{3K-M}{2}</math> | | style="text-align:center;" | <math>\tfrac{3K-M}{2}</math> | ||
| style="text-align:center;" | <math>\tfrac{3(M-K)}{4}</math> | | style="text-align:center;" | <math>\tfrac{3(M-K)}{4}</math> | ||
| style="text-align:center;" | <math>\tfrac{3K-M}{3K+M}</math> | | style="text-align:center;" | <math>\tfrac{3K-M}{3K+M}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| | | | ||
| Line 84: | Line 84: | ||
| style="text-align:center;" | <math>(E,\,\lambda)</math> | | style="text-align:center;" | <math>(E,\,\lambda)</math> | ||
| style="text-align:center;" | <math>\tfrac{E + 3\lambda + R}{6}</math> | | style="text-align:center;" | <math>\tfrac{E + 3\lambda + R}{6}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{E-3\lambda+R}{4}</math> | | style="text-align:center;" | <math>\tfrac{E-3\lambda+R}{4}</math> | ||
| style="text-align:center;" | <math>\tfrac{2\lambda}{E+\lambda+R}</math> | | style="text-align:center;" | <math>\tfrac{2\lambda}{E+\lambda+R}</math> | ||
| Line 95: | Line 95: | ||
| style="text-align:center;" | <math>(E,\,G)</math> | | style="text-align:center;" | <math>(E,\,G)</math> | ||
| style="text-align:center;" | <math>\tfrac{EG}{3(3G-E)}</math> | | style="text-align:center;" | <math>\tfrac{EG}{3(3G-E)}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{G(E-2G)}{3G-E}</math> | | style="text-align:center;" | <math>\tfrac{G(E-2G)}{3G-E}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{E}{2G}-1</math> | | style="text-align:center;" | <math>\tfrac{E}{2G}-1</math> | ||
| style="text-align:center;" | <math>\tfrac{G(4G-E)}{3G-E}</math> | | style="text-align:center;" | <math>\tfrac{G(4G-E)}{3G-E}</math> | ||
| Line 106: | Line 106: | ||
| style="text-align:center;" | <math>(E,\,\nu)</math> | | style="text-align:center;" | <math>(E,\,\nu)</math> | ||
| style="text-align:center;" | <math>\tfrac{E}{3(1-2\nu)}</math> | | style="text-align:center;" | <math>\tfrac{E}{3(1-2\nu)}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> | | style="text-align:center;" | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> | ||
| style="text-align:center;" | <math>\tfrac{E}{2(1+\nu)}</math> | | style="text-align:center;" | <math>\tfrac{E}{2(1+\nu)}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> | | style="text-align:center;" | <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> | ||
| | | | ||
| Line 117: | Line 117: | ||
| style="text-align:center;" | <math>(E,\,M)</math> | | style="text-align:center;" | <math>(E,\,M)</math> | ||
| style="text-align:center;" | <math>\tfrac{3M-E+S}{6}</math> | | style="text-align:center;" | <math>\tfrac{3M-E+S}{6}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{M-E+S}{4}</math> | | style="text-align:center;" | <math>\tfrac{M-E+S}{4}</math> | ||
| style="text-align:center;" | <math>\tfrac{3M+E-S}{8}</math> | | style="text-align:center;" | <math>\tfrac{3M+E-S}{8}</math> | ||
| style="text-align:center;" | <math>\tfrac{E-M+S}{4M}</math> | | style="text-align:center;" | <math>\tfrac{E-M+S}{4M}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <p> <math>S=\pm\sqrt{E^2+9M^2-10EM}</math><br /> | | style="text-align:center;" | <p> <math>S=\pm\sqrt{E^2+9M^2-10EM}</math><br /> | ||
There are two valid solutions.<br /> | There are two valid solutions.<br /> | ||
| Line 132: | Line 132: | ||
| style="text-align:center;" | <math>\lambda+ \tfrac{2G}{3}</math> | | style="text-align:center;" | <math>\lambda+ \tfrac{2G}{3}</math> | ||
| style="text-align:center;" | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> | | style="text-align:center;" | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{\lambda}{2(\lambda + G)}</math> | | style="text-align:center;" | <math>\tfrac{\lambda}{2(\lambda + G)}</math> | ||
| style="text-align:center;" | <math>\lambda+2G\,</math> | | style="text-align:center;" | <math>\lambda+2G\,</math> | ||
| Line 143: | Line 143: | ||
| style="text-align:center;" | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> | | style="text-align:center;" | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> | ||
| style="text-align:center;" | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> | | style="text-align:center;" | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> | | style="text-align:center;" | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{\lambda(1-\nu)}{\nu}</math> | | style="text-align:center;" | <math>\tfrac{\lambda(1-\nu)}{\nu}</math> | ||
| style="text-align:center;" | Cannot be used when <math>\nu=0 \Leftrightarrow \lambda=0</math> | | style="text-align:center;" | Cannot be used when <math>\nu=0 \Leftrightarrow \lambda=0</math> | ||
| Line 154: | Line 154: | ||
| style="text-align:center;" | <math>\tfrac{M + 2\lambda}{3}</math> | | style="text-align:center;" | <math>\tfrac{M + 2\lambda}{3}</math> | ||
| style="text-align:center;" | <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math> | | style="text-align:center;" | <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{M-\lambda}{2}</math> | | style="text-align:center;" | <math>\tfrac{M-\lambda}{2}</math> | ||
| style="text-align:center;" | <math>\tfrac{\lambda}{M+\lambda}</math> | | style="text-align:center;" | <math>\tfrac{\lambda}{M+\lambda}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| | | | ||
| Line 166: | Line 166: | ||
| style="text-align:center;" | <math>2G(1+\nu)\,</math> | | style="text-align:center;" | <math>2G(1+\nu)\,</math> | ||
| style="text-align:center;" | <math>\tfrac{2 G \nu}{1-2\nu}</math> | | style="text-align:center;" | <math>\tfrac{2 G \nu}{1-2\nu}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> | | style="text-align:center;" | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> | ||
| | | | ||
| Line 177: | Line 177: | ||
| style="text-align:center;" | <math>\tfrac{G(3M-4G)}{M-G}</math> | | style="text-align:center;" | <math>\tfrac{G(3M-4G)}{M-G}</math> | ||
| style="text-align:center;" | <math>M - 2G\,</math> | | style="text-align:center;" | <math>M - 2G\,</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| style="text-align:center;" | <math>\tfrac{M - 2G}{2M - 2G}</math> | | style="text-align:center;" | <math>\tfrac{M - 2G}{2M - 2G}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| | | | ||
| Line 189: | Line 189: | ||
| style="text-align:center;" | <math>\tfrac{M \nu}{1-\nu}</math> | | style="text-align:center;" | <math>\tfrac{M \nu}{1-\nu}</math> | ||
| style="text-align:center;" | <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math> | | style="text-align:center;" | <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math> | ||
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| − | | style="text-align:center;" | | + | | style="text-align:center;" | |
| | | | ||
Revision as of 12:25, 29 August 2018
| Conversion formulas | |||||||
|---|---|---|---|---|---|---|---|
| Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas. | |||||||
| <math>K=\,</math> | <math>E=\, </math> | <math>\lambda=\,</math> | <math>G=\, </math> | <math>\nu=\,</math> | <math>M=\,</math> | Notes | |
| <math>(K,\,E)</math> | <math>\tfrac{3K(3K-E)}{9K-E}</math> | <math>\tfrac{3KE}{9K-E}</math> | <math>\tfrac{3K-E}{6K}</math> | <math>\tfrac{3K(3K+E)}{9K-E}</math> | |||
| <math>(K,\,\lambda)</math> | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> | <math>\tfrac{3(K-\lambda)}{2}</math> | <math>\tfrac{\lambda}{3K-\lambda}</math> | <math>3K-2\lambda\,</math> | |||
| <math>(K,\,G)</math> | <math>\tfrac{9KG}{3K+G}</math> | <math>K-\tfrac{2G}{3}</math> | <math>\tfrac{3K-2G}{2(3K+G)}</math> | <math>K+\tfrac{4G}{3}</math> | |||
| <math>(K,\,\nu)</math> | <math>3K(1-2\nu)\,</math> | <math>\tfrac{3K\nu}{1+\nu}</math> | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> | <math>\tfrac{3K(1-\nu)}{1+\nu}</math> | |||
| <math>(K,\,M)</math> | <math>\tfrac{9K(M-K)}{3K+M}</math> | <math>\tfrac{3K-M}{2}</math> | <math>\tfrac{3(M-K)}{4}</math> | <math>\tfrac{3K-M}{3K+M}</math> | |||
| <math>(E,\,\lambda)</math> | <math>\tfrac{E + 3\lambda + R}{6}</math> | <math>\tfrac{E-3\lambda+R}{4}</math> | <math>\tfrac{2\lambda}{E+\lambda+R}</math> | <math>\tfrac{E-\lambda+R}{2}</math> | <math>R=\sqrt{E^2+9\lambda^2 + 2E\lambda}</math> | ||
| <math>(E,\,G)</math> | <math>\tfrac{EG}{3(3G-E)}</math> | <math>\tfrac{G(E-2G)}{3G-E}</math> | <math>\tfrac{E}{2G}-1</math> | <math>\tfrac{G(4G-E)}{3G-E}</math> | |||
| <math>(E,\,\nu)</math> | <math>\tfrac{E}{3(1-2\nu)}</math> | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> | <math>\tfrac{E}{2(1+\nu)}</math> | <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> | |||
| <math>(E,\,M)</math> | <math>\tfrac{3M-E+S}{6}</math> | <math>\tfrac{M-E+S}{4}</math> | <math>\tfrac{3M+E-S}{8}</math> | <math>\tfrac{E-M+S}{4M}</math> | <math>S=\pm\sqrt{E^2+9M^2-10EM}</math> There are two valid solutions. | ||
| <math>(\lambda,\,G)</math> | <math>\lambda+ \tfrac{2G}{3}</math> | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> | <math>\tfrac{\lambda}{2(\lambda + G)}</math> | <math>\lambda+2G\,</math> | |||
| <math>(\lambda,\,\nu)</math> | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> | <math>\tfrac{\lambda(1-\nu)}{\nu}</math> | Cannot be used when <math>\nu=0 \Leftrightarrow \lambda=0</math> | ||
| <math>(\lambda,\,M)</math> | <math>\tfrac{M + 2\lambda}{3}</math> | <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math> | <math>\tfrac{M-\lambda}{2}</math> | <math>\tfrac{\lambda}{M+\lambda}</math> | |||
| <math>(G,\,\nu)</math> | <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> | <math>2G(1+\nu)\,</math> | <math>\tfrac{2 G \nu}{1-2\nu}</math> | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> | |||
| <math>(G,\,M)</math> | <math>M - \tfrac{4G}{3}</math> | <math>\tfrac{G(3M-4G)}{M-G}</math> | <math>M - 2G\,</math> | <math>\tfrac{M - 2G}{2M - 2G}</math> | |||
| <math>(\nu,\,M)</math> | <math>\tfrac{M(1+\nu)}{3(1-\nu)}</math> | <math>\tfrac{M(1+\nu)(1-2\nu)}{1-\nu}</math> | <math>\tfrac{M \nu}{1-\nu}</math> | <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math> | |||
The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.
References
- G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4