Difference between revisions of "Template:Elastic moduli"
Jump to navigation
Jump to search
imported>Jonesey95 (Fix Linter errors) |
imported>Ssolbergj |
||
| Line 13: | Line 13: | ||
}} | }} | ||
{| class="wikitable collapsible" width="100%" style="font-size:smaller; background:white" align=center | {| class="wikitable collapsible" width="100%" style="font-size:smaller; background:white" align=center | ||
| − | ! colspan=8 | Conversion | + | ! colspan=8 | Conversion formulae |
|- | |- | ||
| colspan=8 | Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas. | | colspan=8 | Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas. | ||
Revision as of 08:59, 13 November 2018
| Conversion formulae | |||||||
|---|---|---|---|---|---|---|---|
| Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas. | |||||||
| <math>K=\,</math> | <math>E=\, </math> | <math>\lambda=\,</math> | <math>G=\, </math> | <math>\nu=\,</math> | <math>M=\,</math> | Notes | |
| <math>(K,\,E)</math> | <math>\tfrac{3K(3K-E)}{9K-E}</math> | <math>\tfrac{3KE}{9K-E}</math> | <math>\tfrac{3K-E}{6K}</math> | <math>\tfrac{3K(3K+E)}{9K-E}</math> | |||
| <math>(K,\,\lambda)</math> | <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> | <math>\tfrac{3(K-\lambda)}{2}</math> | <math>\tfrac{\lambda}{3K-\lambda}</math> | <math>3K-2\lambda\,</math> | |||
| <math>(K,\,G)</math> | <math>\tfrac{9KG}{3K+G}</math> | <math>K-\tfrac{2G}{3}</math> | <math>\tfrac{3K-2G}{2(3K+G)}</math> | <math>K+\tfrac{4G}{3}</math> | |||
| <math>(K,\,\nu)</math> | <math>3K(1-2\nu)\,</math> | <math>\tfrac{3K\nu}{1+\nu}</math> | <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> | <math>\tfrac{3K(1-\nu)}{1+\nu}</math> | |||
| <math>(K,\,M)</math> | <math>\tfrac{9K(M-K)}{3K+M}</math> | <math>\tfrac{3K-M}{2}</math> | <math>\tfrac{3(M-K)}{4}</math> | <math>\tfrac{3K-M}{3K+M}</math> | |||
| <math>(E,\,\lambda)</math> | <math>\tfrac{E + 3\lambda + R}{6}</math> | <math>\tfrac{E-3\lambda+R}{4}</math> | <math>\tfrac{2\lambda}{E+\lambda+R}</math> | <math>\tfrac{E-\lambda+R}{2}</math> | <math>R=\sqrt{E^2+9\lambda^2 + 2E\lambda}</math> | ||
| <math>(E,\,G)</math> | <math>\tfrac{EG}{3(3G-E)}</math> | <math>\tfrac{G(E-2G)}{3G-E}</math> | <math>\tfrac{E}{2G}-1</math> | <math>\tfrac{G(4G-E)}{3G-E}</math> | |||
| <math>(E,\,\nu)</math> | <math>\tfrac{E}{3(1-2\nu)}</math> | <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> | <math>\tfrac{E}{2(1+\nu)}</math> | <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math> | |||
| <math>(E,\,M)</math> | <math>\tfrac{3M-E+S}{6}</math> | <math>\tfrac{M-E+S}{4}</math> | <math>\tfrac{3M+E-S}{8}</math> | <math>\tfrac{E-M+S}{4M}</math> | <math>S=\pm\sqrt{E^2+9M^2-10EM}</math> There are two valid solutions. | ||
| <math>(\lambda,\,G)</math> | <math>\lambda+ \tfrac{2G}{3}</math> | <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> | <math>\tfrac{\lambda}{2(\lambda + G)}</math> | <math>\lambda+2G\,</math> | |||
| <math>(\lambda,\,\nu)</math> | <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> | <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> | <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> | <math>\tfrac{\lambda(1-\nu)}{\nu}</math> | Cannot be used when <math>\nu=0 \Leftrightarrow \lambda=0</math> | ||
| <math>(\lambda,\,M)</math> | <math>\tfrac{M + 2\lambda}{3}</math> | <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math> | <math>\tfrac{M-\lambda}{2}</math> | <math>\tfrac{\lambda}{M+\lambda}</math> | |||
| <math>(G,\,\nu)</math> | <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> | <math>2G(1+\nu)\,</math> | <math>\tfrac{2 G \nu}{1-2\nu}</math> | <math>\tfrac{2G(1-\nu)}{1-2\nu} </math> | |||
| <math>(G,\,M)</math> | <math>M - \tfrac{4G}{3}</math> | <math>\tfrac{G(3M-4G)}{M-G}</math> | <math>M - 2G\,</math> | <math>\tfrac{M - 2G}{2M - 2G}</math> | |||
| <math>(\nu,\,M)</math> | <math>\tfrac{M(1+\nu)}{3(1-\nu)}</math> | <math>\tfrac{M(1+\nu)(1-2\nu)}{1-\nu}</math> | <math>\tfrac{M \nu}{1-\nu}</math> | <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math> | |||
The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.
References
- G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4