Difference between revisions of "Template:Geologic time scale"

From blackwiki
Jump to navigation Jump to search
imported>Waso99
imported>Jdaloner
("Tnavbar" --> "Navbar"; updated some links, and made some minor spacing/formatting/capitalization adjustments. Removed redundant manual sort keys from category tags.)
Line 1: Line 1:
 
<div style="clear:both; width:100%; margin-left:auto; margin-right:auto" class="NavFrame">
 
<div style="clear:both; width:100%; margin-left:auto; margin-right:auto" class="NavFrame">
<div class="NavHead" style="background-color:#ccccff">{{Tnavbar-collapsible | [[Geologic time scale]] | Geologic time scale}}</div>
+
<div class="NavHead" style="background-color:#ccccff">{{Navbar-collapsible | [[Geologic time scale]] | Geologic time scale}}</div>
 
<div class="NavContent">
 
<div class="NavContent">
 
<!-- This next lines determine how wide the white section of the template should be, followed by the text size in the same part. They must be listed in percentage. -->
 
<!-- This next lines determine how wide the white section of the template should be, followed by the text size in the same part. They must be listed in percentage. -->
Line 21: Line 21:
 
|style="background:{{period color|Holocene}}"|
 
|style="background:{{period color|Holocene}}"|
 
[[Chronozone|chrons]]: [[Subatlantic]]{{·}}[[Subboreal]]{{·}}[[Atlantic (period)|Atlantic]]{{·}}[[Boreal (period)|Boreal]]{{·}}[[Preboreal]]
 
[[Chronozone|chrons]]: [[Subatlantic]]{{·}}[[Subboreal]]{{·}}[[Atlantic (period)|Atlantic]]{{·}}[[Boreal (period)|Boreal]]{{·}}[[Preboreal]]
|rowspan="1" | [[Quaternary glaciation|Quaternary Ice Age]] recedes, and the current [[interglacial]] begins; rise of human [[civilization]]. [[Sahara]] forms from savannah, and [[agriculture]] begins. [[Stone Age]] cultures give way to [[Bronze Age]] (3300 BC) and [[Iron Age]] (1200 BC), giving rise to [[Synoptic table of the principal old world prehistoric cultures|many pre-historic cultures]] throughout the world. [[Little Ice Age]] ([[stadial]]) causes brief cooling in [[Northern Hemisphere]] from 1400 to 1850. Following the [[Industrial Revolution]], [[Earth's atmosphere|Atmospheric]] [[Carbon dioxide in the Earth's atmosphere|CO<sub>2</sub>]] levels rise from around 280 [[parts per million]] volume (ppmv) to the current level of 400<ref>"NASA Scientists React to 400 ppm Carbon Milestone". Retrieved 2014-01-15 [http://climate.nasa.gov/400ppmquotes/]</ref> ppmv.<ref name="Royer">{{cite journal |last=Royer |title={{CO2}}-forced climate thresholds during the Phanerozoic |journal=Geochimica et Cosmochimica Acta |volume=70 |pages=5665–75 |year=2006 |url=http://droyer.web.wesleyan.edu/PhanCO2%28GCA%29.pdf |format=PDF |doi=10.1016/j.gca.2005.11.031 |first1=Dana L. |issue=23|bibcode = 2006GeCoA..70.5665R }}</ref><ref name="atmospheric-carbon-dioxide">For more information on this, see [[Atmosphere of Earth#Evolution of Earth's atmosphere]], [[Carbon dioxide in the Earth's atmosphere]], and [[climate change]]. Specific graphs of reconstructed CO<sub>2</sub> levels over the past ~550, 65, and 5 million years can be seen at [[:Image:Phanerozoic_Carbon_Dioxide.png]], [[:Image:65 Myr Climate Change.png]], [[:Image:Five Myr Climate Change.png]], respectively.</ref>
+
|rowspan="1" | [[Quaternary glaciation|Quaternary Ice Age]] recedes, and the current [[interglacial]] begins; rise of human [[civilization]]. [[Sahara]] forms from savannah, and [[agriculture]] begins. [[Stone Age]] cultures give way to [[Bronze Age]] (3300 BC) and [[Iron Age]] (1200 BC), giving rise to [[Synoptic table of the principal old world prehistoric cultures|many pre-historic cultures]] throughout the world. [[Little Ice Age]] ([[stadial]]) causes brief cooling in [[Northern Hemisphere]] from 1400 to 1850. Following the [[Industrial Revolution]], [[Atmosphere of Earth|atmospheric]] [[Carbon dioxide in the Earth's atmosphere|CO<sub>2</sub>]] levels rise from around 280 [[parts per million]] volume (ppmv) to the current level of 400<ref>"NASA Scientists React to 400 ppm Carbon Milestone". Retrieved 2014-01-15 [http://climate.nasa.gov/400ppmquotes/]</ref> ppmv.<ref name="Royer">{{cite journal |last=Royer |title={{CO2}}-forced climate thresholds during the Phanerozoic |journal=Geochimica et Cosmochimica Acta |volume=70 |pages=5665–75 |year=2006 |url=http://droyer.web.wesleyan.edu/PhanCO2%28GCA%29.pdf |format=PDF |doi=10.1016/j.gca.2005.11.031 |first1=Dana L. |issue=23|bibcode = 2006GeCoA..70.5665R }}</ref><ref name="atmospheric-carbon-dioxide">For more information on this, see [[Atmosphere of Earth#Evolution of Earth's atmosphere]], [[Carbon dioxide in the Earth's atmosphere]], and [[Climate change]]. Specific graphs of reconstructed CO<sub>2</sub> levels over the past ~550, 65, and 5 million years can be seen at [[:File:Phanerozoic Carbon Dioxide.png]], [[:File:65 Myr Climate Change.png]], [[:File:Five Myr Climate Change.png]], respectively.</ref>
 
|style="background:{{period color|Holocene}}"| 0.0117<ref name="holocene">The start time for the [[Holocene]] epoch is here given as [[Upper Paleolithic|11,700]] [[before present|years ago]]. For further discussion of the dating of this epoch, see [[Holocene]].</ref>
 
|style="background:{{period color|Holocene}}"| 0.0117<ref name="holocene">The start time for the [[Holocene]] epoch is here given as [[Upper Paleolithic|11,700]] [[before present|years ago]]. For further discussion of the dating of this epoch, see [[Holocene]].</ref>
 
|-
 
|-
 
|rowspan="4" style="background:{{period color|Pleistocene}}"| [[Pleistocene]]
 
|rowspan="4" style="background:{{period color|Pleistocene}}"| [[Pleistocene]]
 
|style="background:{{period color|Upper Pleistocene}}"| [[Late Pleistocene|Late]] (locally [[Tarantian]]{{·}}[[Tyrrhenian Stage|Tyrrhenian]]{{·}}[[Eemian]]{{·}}[[Sangamonian Stage|Sangamonian]])
 
|style="background:{{period color|Upper Pleistocene}}"| [[Late Pleistocene|Late]] (locally [[Tarantian]]{{·}}[[Tyrrhenian Stage|Tyrrhenian]]{{·}}[[Eemian]]{{·}}[[Sangamonian Stage|Sangamonian]])
|rowspan="4"| Flourishing and then extinction of many large [[mammal]]s ([[Pleistocene megafauna]]). Evolution of anatomically modern [[human]]s. [[Last glacial period|Quaternary Ice Age]] continues with [[Glacial period|glaciations]] and [[interstadial]]s (and the accompanying fluctuations from 100 to 300 ppmv in [[Earth's atmosphere|atmospheric]] CO<sub>2</sub> levels<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />), further intensification of [[Greenhouse and Icehouse Earth|Icehouse Earth]] conditions, roughly 1.6 [[Year#SI_prefix_multipliers|Ma]]. [[Last glacial maximum]] (30000 [[before present|years ago]]), [[last glacial period]] (18000&ndash;15000 years ago). Dawn of human [[Lower Paleolithic#Cultures|stone-age cultures]], with [[Middle Paleolithic#Cultures|increasing technical complexity]] relative to previous ice age cultures, such as [[Upper Paleolithic#Cultures|engravings and clay statues]] (e.g. [[Venus of Lespugue]]), particularly in the [[Mediterranean]] and Europe. [[Lake Toba]] [[supervolcano]] erupts 75000 years before present, causing a [[volcanic winter]] that [[Toba catastrophe theory|pushes humanity to the brink of extinction]]. Pleistocene ends with [[Oldest Dryas]], [[Older Dryas]]/[[Allerød Oscillation|Allerød]] and [[Younger Dryas]] climate events, with Younger Dryas forming the boundary with the Holocene.
+
|rowspan="4"| Flourishing and then extinction of many large [[mammal]]s ([[Pleistocene megafauna]]). Evolution of anatomically modern [[human]]s. [[Last glacial period|Quaternary Ice Age]] continues with [[Glacial period|glaciations]] and [[interstadial]]s (and the accompanying fluctuations from 100 to 300 ppmv in [[Atmosphere of Earth|atmospheric]] CO<sub>2</sub> levels<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />), further intensification of [[Greenhouse and Icehouse Earth|Icehouse Earth]] conditions, roughly 1.6 [[Year#SI prefix multipliers|Ma]]. [[Last glacial maximum]] (30000 [[before present|years ago]]), [[last glacial period]] (18000&ndash;15000 years ago). Dawn of human [[Lower Paleolithic#Cultures|stone-age cultures]], with [[Middle Paleolithic#Cultures|increasing technical complexity]] relative to previous ice age cultures, such as [[Upper Paleolithic#Cultures|engravings and clay statues]] (e.g. [[Venus of Lespugue]]), particularly in the [[Mediterranean]] and Europe. [[Lake Toba]] [[supervolcano]] erupts 75000 years before present, causing a [[volcanic winter]] that [[Toba catastrophe theory|pushes humanity to the brink of extinction]]. Pleistocene ends with [[Oldest Dryas]], [[Older Dryas]]/[[Allerød Oscillation|Allerød]] and [[Younger Dryas]] climate events, with Younger Dryas forming the boundary with the Holocene.
 
|style="background:{{period color|upper Pleistocene}}"| 0.126
 
|style="background:{{period color|upper Pleistocene}}"| 0.126
 
|-
 
|-
Line 49: Line 49:
 
|rowspan="6" style="background:{{period color|Miocene}}"| [[Miocene]]
 
|rowspan="6" style="background:{{period color|Miocene}}"| [[Miocene]]
 
|style="background:{{period color|Messinian}}"| [[Messinian]]
 
|style="background:{{period color|Messinian}}"| [[Messinian]]
|rowspan="6"| [[Greenhouse and Icehouse Earth|Moderate Icehouse climate]], punctuated by [[ice age]]s; [[Orogeny]] in [[northern hemisphere]]. Modern [[mammal]] and [[bird]] families become recognizable. [[Equidae|Horses]] and [[mastodon]]s diverse. [[Grass]]es become ubiquitous. First [[ape]]s appear (for reference see the article: "[[Sahelanthropus tchadensis]]"). [[Kaikoura Orogeny]] forms [[Southern Alps]] in New Zealand, continues today. Orogeny of the Alps in Europe slows, but continues to this day. [[Carpathian orogeny]] forms [[Carpathian Mountains]] in [[Central Europe|Central]] and [[Eastern Europe]]. [[Hellenic orogeny]] in Greece and Aegean Sea slows, but continues to this day. [[Middle Miocene Disruption]] occurs. Widespread forests slowly [[photosynthesis|draw in]] massive amounts of CO<sub>2</sub>, gradually lowering the level of atmospheric CO<sub>2</sub> from 650 ppmv down to around 100 ppmv.<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />
+
|rowspan="6"| [[Greenhouse and Icehouse Earth|Moderate Icehouse climate]], punctuated by [[ice age]]s; [[Orogeny]] in [[Northern Hemisphere]]. Modern [[mammal]] and [[bird]] families become recognizable. [[Equidae|Horses]] and [[mastodon]]s diverse. [[Grass]]es become ubiquitous. First [[ape]]s appear (for reference see the article: "[[Sahelanthropus tchadensis]]"). [[Kaikoura Orogeny]] forms [[Southern Alps]] in New Zealand, continues today. Orogeny of the Alps in Europe slows, but continues to this day. [[Carpathian orogeny]] forms [[Carpathian Mountains]] in [[Central Europe|Central]] and [[Eastern Europe]]. [[Hellenic orogeny]] in Greece and Aegean Sea slows, but continues to this day. [[Middle Miocene Disruption]] occurs. Widespread forests slowly [[photosynthesis|draw in]] massive amounts of CO<sub>2</sub>, gradually lowering the level of atmospheric CO<sub>2</sub> from 650 ppmv down to around 100 ppmv.<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />
 
|style="background:{{period color|Messinian}}"| 7.246<sup>*</sup>
 
|style="background:{{period color|Messinian}}"| 7.246<sup>*</sup>
 
|-
 
|-
Line 92: Line 92:
 
|rowspan="3" style="background:{{period color|Paleocene}}"| [[Paleocene]]
 
|rowspan="3" style="background:{{period color|Paleocene}}"| [[Paleocene]]
 
|style="background:{{period color|Thanetian}}"| [[Thanetian]]
 
|style="background:{{period color|Thanetian}}"| [[Thanetian]]
|rowspan="3"| [[Greenhouse and Icehouse Earth|Climate tropical]]. Modern [[plant]]s appear; [[Mammal]]s diversify into a number of primitive lineages following the extinction of the dinosaurs. First large mammals (up to [[bear]] or small [[hippopotamus|hippo]] size). [[Alpine orogeny]] in Europe and Asia begins. [[Indian Subcontinent]] collides with Asia 55 [[Year#SI_prefix_multipliers|Ma]], [[Geology of the Himalaya|Himalayan Orogeny]] starts between 52 and 48 [[Year#SI_prefix_multipliers|Ma]].
+
|rowspan="3"| [[Greenhouse and Icehouse Earth|Climate tropical]]. Modern [[plant]]s appear; [[Mammal]]s diversify into a number of primitive lineages following the extinction of the dinosaurs. First large mammals (up to [[bear]] or small [[hippopotamus|hippo]] size). [[Alpine orogeny]] in Europe and Asia begins. [[Indian Subcontinent]] collides with Asia 55 [[Year#SI prefix multipliers|Ma]], [[Geology of the Himalaya|Himalayan Orogeny]] starts between 52 and 48 [[Year#SI prefix multipliers|Ma]].
 
|style="background:{{period color|Thanetian}}"| 59.2<sup>*</sup>
 
|style="background:{{period color|Thanetian}}"| 59.2<sup>*</sup>
 
|-
 
|-
Line 105: Line 105:
 
|rowspan="6" style="background:{{period color|Late Cretaceous}}"| [[Late Cretaceous|Late]]
 
|rowspan="6" style="background:{{period color|Late Cretaceous}}"| [[Late Cretaceous|Late]]
 
|style="background:{{period color|Maastrichtian}}"| [[Maastrichtian]]
 
|style="background:{{period color|Maastrichtian}}"| [[Maastrichtian]]
|rowspan="12"| [[Flowering plant]]s proliferate, along with new types of [[insect]]s. More modern [[teleost]] fish begin to appear. [[Ammonoidea]], [[Belemnoidea|belemnites]], [[rudist]] [[Bivalvia|bivalve]]s, [[Echinoidea|echinoid]]s and [[Porifera|sponges]] all common. Many new types of [[dinosaur]]s (e.g. [[Tyrannosauridae|Tyrannosaurs]], [[Titanosauridae|Titanosaurs]], [[Hadrosauridae|duck bills]], and [[Ceratopsidae|horned dinosaurs]]) evolve on land, as do [[Eusuchia]] ([[Crocodilia|modern crocodilians]]); and [[mosasaur]]s and modern [[shark]]s appear in the sea. Primitive [[bird]]s gradually replace [[pterosaurs]]. [[Monotremes]], [[marsupial]]s and [[Eutheria|placental]] mammals appear. Break up of [[Gondwana]]. Beginning of [[Laramide Orogeny|Laramide]] and [[Sevier Orogeny|Sevier Orogenies]] of the [[Rocky Mountains]]. [[Earth's atmosphere|Atmospheric]] CO<sub>2</sub> close to present-day levels.
+
|rowspan="12"| [[Flowering plant]]s proliferate, along with new types of [[insect]]s. More modern [[teleost]] fish begin to appear. [[Ammonoidea]], [[Belemnoidea|belemnites]], [[rudist]] [[Bivalvia|bivalve]]s, [[Echinoidea|echinoid]]s and [[Porifera|sponges]] all common. Many new types of [[dinosaur]]s (e.g. [[Tyrannosauridae|Tyrannosaurs]], [[Titanosauridae|Titanosaurs]], [[Hadrosauridae|duck bills]], and [[Ceratopsidae|horned dinosaurs]]) evolve on land, as do [[Eusuchia]] ([[Crocodilia|modern crocodilians]]); and [[mosasaur]]s and modern [[shark]]s appear in the sea. Primitive [[bird]]s gradually replace [[pterosaurs]]. [[Monotremes]], [[marsupial]]s and [[Eutheria|placental]] mammals appear. Break up of [[Gondwana]]. Beginning of [[Laramide Orogeny|Laramide]] and [[Sevier Orogeny|Sevier Orogenies]] of the [[Rocky Mountains]]. [[Atmosphere of Earth|atmospheric]] CO<sub>2</sub> close to present-day levels.
 
|style="background:{{period color|Maastrichtian}}"| 72.1 ±&nbsp;0.2<sup>*</sup>
 
|style="background:{{period color|Maastrichtian}}"| 72.1 ±&nbsp;0.2<sup>*</sup>
 
|-
 
|-
Line 183: Line 183:
 
|rowspan="3" style="background:{{period color|Late Triassic}}"| [[Late Triassic|Late]]
 
|rowspan="3" style="background:{{period color|Late Triassic}}"| [[Late Triassic|Late]]
 
|style="background:{{period color|Rhaetian}}"| [[Rhaetian]]
 
|style="background:{{period color|Rhaetian}}"| [[Rhaetian]]
|rowspan="7"| [[Archosaur]]s dominant on land as [[dinosaur]]s, in the oceans as [[Ichthyosaur]]s and [[nothosaur]]s, and in the air as [[pterosaur]]s. [[Cynodont]]s become smaller and more mammal-like, while first [[mammal]]s and [[crocodilia]] appear. ''[[Dicroidium]]''flora common on land. Many large aquatic [[temnospondyli|temnospondyl]] amphibians. [[Ammonite|Ceratitic ammonoids]] extremely common. [[Scleractinia|Modern corals]] and [[teleost]] fish appear, as do many modern [[insect]] clades. [[Andes Mountains|Andean Orogeny]] in South America. [[Cimmerian Orogeny]] in Asia. [[Rangitata Orogeny]] begins in New Zealand. [[Hunter-Bowen Orogeny]] in [[Northern Australia]], Queensland and [[New South Wales]] ends, (c. 260&ndash;225 [[Year#SI_prefix_multipliers|Ma]])
+
|rowspan="7"| [[Archosaur]]s dominant on land as [[dinosaur]]s, in the oceans as [[Ichthyosaur]]s and [[nothosaur]]s, and in the air as [[pterosaur]]s. [[Cynodont]]s become smaller and more mammal-like, while first [[mammal]]s and [[crocodilia]] appear. ''[[Dicroidium]]''flora common on land. Many large aquatic [[temnospondyli|temnospondyl]] amphibians. [[Ammonite|Ceratitic ammonoids]] extremely common. [[Scleractinia|Modern corals]] and [[teleost]] fish appear, as do many modern [[insect]] clades. [[Andes Mountains|Andean Orogeny]] in South America. [[Cimmerian Orogeny]] in Asia. [[Rangitata Orogeny]] begins in New Zealand. [[Hunter-Bowen Orogeny]] in [[Northern Australia]], Queensland and [[New South Wales]] ends, (c. 260&ndash;225 [[Year#SI prefix multipliers|Ma]])
 
|style="background:{{period color|Rhaetian}}"| c. 208.5
 
|style="background:{{period color|Rhaetian}}"| c. 208.5
 
|-
 
|-
Line 210: Line 210:
 
|rowspan="2" style="background:{{period color|Lopingian}}"| [[Lopingian]]
 
|rowspan="2" style="background:{{period color|Lopingian}}"| [[Lopingian]]
 
|style="background:{{period color|Changhsingian}}"| [[Changhsingian]]
 
|style="background:{{period color|Changhsingian}}"| [[Changhsingian]]
|rowspan="9"| [[Landmass]]es unite into [[supercontinent]] [[Pangaea]], creating the [[Appalachian Mountains|Appalachian]]s. End of Permo-Carboniferous glaciation. [[Synapsida|Synapsid]] [[Reptilia|reptile]]s ([[pelycosaur]]s and [[therapsid]]s) become plentiful, while [[parareptile]]s and [[temnospondyli|temnospondyl]] [[Amphibian|amphibians]] remain common. In the mid-Permian, [[coal]]-age flora are replaced by [[Conifer cone|cone]]-bearing [[gymnosperm]]s (the first true [[seed plants]]) and by the first true [[moss]]es. [[Beetles]] and [[Fly|flies]] evolve. Marine life flourishes in warm shallow reefs; [[Productida|productid]] and [[Spiriferida|spiriferid]] brachiopods, bivalves, [[foraminifera|foram]]s, and [[orthocerid|ammonoid]]s all abundant. [[Permian-Triassic extinction event]] occurs 251 [[Year#SI_prefix_multipliers|Ma]]: 95% of life on Earth becomes extinct, including all [[trilobite]]s, [[graptolite]]s, and [[blastoid]]s. [[Ouachita Orogeny|Ouachita]] and [[Innuitian orogeny|Innuitian orogenies]] in North America. [[Uralian orogeny]] in Europe/Asia tapers off. [[Altai Mountains|Altaid]] orogeny in Asia. [[Hunter-Bowen Orogeny]] on [[Australia (Continent)|Australian Continent]] begins (c. 260&ndash;225 [[Year#SI_prefix_multipliers|Ma]]), forming the [[MacDonnell Ranges]].
+
|rowspan="9"| [[Landmass]]es unite into [[supercontinent]] [[Pangaea]], creating the [[Appalachian Mountains|Appalachian]]s. End of Permo-Carboniferous glaciation. [[Synapsida|Synapsid]] [[Reptilia|reptile]]s ([[pelycosaur]]s and [[therapsid]]s) become plentiful, while [[parareptile]]s and [[temnospondyli|temnospondyl]] [[Amphibian|amphibians]] remain common. In the mid-Permian, [[coal]]-age flora are replaced by [[Conifer cone|cone]]-bearing [[gymnosperm]]s (the first true [[seed plants]]) and by the first true [[moss]]es. [[Beetles]] and [[Fly|flies]] evolve. Marine life flourishes in warm shallow reefs; [[Productida|productid]] and [[Spiriferida|spiriferid]] brachiopods, bivalves, [[foraminifera|foram]]s, and [[orthocerid|ammonoid]]s all abundant. [[Permian-Triassic extinction event]] occurs 251 [[Year#SI prefix multipliers|Ma]]: 95% of life on Earth becomes extinct, including all [[trilobite]]s, [[graptolite]]s, and [[blastoid]]s. [[Ouachita Orogeny|Ouachita]] and [[Innuitian orogeny|Innuitian orogenies]] in North America. [[Uralian orogeny]] in Europe/Asia tapers off. [[Altai Mountains|Altaid]] orogeny in Asia. [[Hunter-Bowen Orogeny]] on [[Australia (continent)|Australian continent]] begins (c. 260&ndash;225 [[Year#SI prefix multipliers|Ma]]), forming the [[MacDonnell Ranges]].
 
|style="background:{{period color|Changhsingian}}"| 254.2 ±&nbsp;0.1<sup>*</sup>
 
|style="background:{{period color|Changhsingian}}"| 254.2 ±&nbsp;0.1<sup>*</sup>
 
|-
 
|-
Line 242: Line 242:
 
|rowspan="4" style="background:{{period color|Pennsylvanian}}"| [[Pennsylvanian (geology)|Pennsylvanian]]
 
|rowspan="4" style="background:{{period color|Pennsylvanian}}"| [[Pennsylvanian (geology)|Pennsylvanian]]
 
|style="background:{{period color|Gzhelian}}"| [[Gzhelian]]
 
|style="background:{{period color|Gzhelian}}"| [[Gzhelian]]
|rowspan="4"| [[Pterygota|Winged insects]] radiate suddenly; some (esp. [[Protodonata]] and [[Palaeodictyoptera]]) are quite large. [[Amphibian]]s common and diverse. First [[reptile]]s and [[coal]] forests ([[Lepidodendron|scale tree]]s, ferns, [[Sigillaria|club tree]]s, [[Calamites|giant horsetail]]s, ''[[Cordaites]]'', etc.). Highest-ever [[Earth's atmosphere|atmospheric]] [[oxygen]] levels. [[Goniatite]]s, brachiopods, bryozoa, bivalves, and corals plentiful in the seas and oceans. Testate [[foram]]s proliferate. [[Uralian orogeny]] in Europe and Asia. [[Variscan orogeny]] occurs towards middle and late Mississippian Periods.
+
|rowspan="4"| [[Pterygota|Winged insects]] radiate suddenly; some (esp. [[Protodonata]] and [[Palaeodictyoptera]]) are quite large. [[Amphibian]]s common and diverse. First [[reptile]]s and [[coal]] forests ([[Lepidodendron|scale tree]]s, ferns, [[Sigillaria|club tree]]s, [[Calamites|giant horsetail]]s, ''[[Cordaites]]'', etc.). Highest-ever [[Atmosphere of Earth|atmospheric]] [[oxygen]] levels. [[Goniatite]]s, brachiopods, bryozoa, bivalves, and corals plentiful in the seas and oceans. Testate [[foram]]s proliferate. [[Uralian orogeny]] in Europe and Asia. [[Variscan orogeny]] occurs towards middle and late Mississippian Periods.
 
|style="background:{{period color|Gzhelian}}"| 303.7 ±&nbsp;0.1
 
|style="background:{{period color|Gzhelian}}"| 303.7 ±&nbsp;0.1
 
|-
 
|-
Line 293: Line 293:
 
|rowspan="8" style="background:{{period color|Silurian}}"| [[Silurian]]
 
|rowspan="8" style="background:{{period color|Silurian}}"| [[Silurian]]
 
|colspan="2" style="background:{{period color|Pridoli}}"| [[Pridoli epoch|Pridoli]]
 
|colspan="2" style="background:{{period color|Pridoli}}"| [[Pridoli epoch|Pridoli]]
|rowspan="8"| First [[Vascular plant]]s (the [[rhyniophytes]] and their relatives), first [[millipede]]s and [[Arthropleurida|arthropleurid]]s on land. First [[jawed fish]]es, as well as many [[ostracoderm|armoured]] [[agnatha|jawless fish]], populate the seas. [[Eurypterid|Sea-scorpions]] reach large size. [[Tabulate coral|Tabulate]] and [[Rugosa|rugose]] corals, [[brachiopod]]s (''Pentamerida'', [[Rhynchonellida]], etc.), and [[crinoid]]s all abundant. [[Trilobite]]s and [[mollusk]]s diverse; [[graptolite]]s not as varied. Beginning of [[Caledonian Orogeny]] for hills in England, Ireland, Wales, Scotland, and the [[Scandinavian Mountains]]. Also continued into Devonian period as the [[Acadian Orogeny]], above. [[Taconic Orogeny]] tapers off. [[Lachlan Orogeny]] on [[Australia (Continent)|Australian Continent]] tapers off.
+
|rowspan="8"| First [[Vascular plant]]s (the [[rhyniophytes]] and their relatives), first [[millipede]]s and [[Arthropleurida|arthropleurid]]s on land. First [[jawed fish]]es, as well as many [[ostracoderm|armoured]] [[agnatha|jawless fish]], populate the seas. [[Eurypterid|Sea-scorpions]] reach large size. [[Tabulate coral|Tabulate]] and [[Rugosa|rugose]] corals, [[brachiopod]]s (''Pentamerida'', [[Rhynchonellida]], etc.), and [[crinoid]]s all abundant. [[Trilobite]]s and [[mollusk]]s diverse; [[graptolite]]s not as varied. Beginning of [[Caledonian Orogeny]] for hills in England, Ireland, Wales, Scotland, and the [[Scandinavian Mountains]]. Also continued into Devonian period as the [[Acadian Orogeny]], above. [[Taconic Orogeny]] tapers off. [[Lachlan Orogeny]] on [[Australia (continent)|Australian continent]] tapers off.
 
|style="background:{{period color|Pridoli}}"| 423.0 ±&nbsp;2.3<sup>*</sup>
 
|style="background:{{period color|Pridoli}}"| 423.0 ±&nbsp;2.3<sup>*</sup>
 
|-
 
|-
Line 310: Line 310:
 
|style="background:{{period color|Sheinwoodian}}"| 433.4 ±&nbsp;0.8<sup>*</sup>
 
|style="background:{{period color|Sheinwoodian}}"| 433.4 ±&nbsp;0.8<sup>*</sup>
 
|-
 
|-
|rowspan="3" style="background:{{period color|Llandovery}}"| [[Llandovery epoch|Llandovery]]/<br/>[[Silurian|Alexandrian]]
+
|rowspan="3" style="background:{{period color|Llandovery}}"| [[Llandovery epoch|Llandovery]]/<br />[[Silurian|Alexandrian]]
 
|style="background:{{period color|Telychian}}"| [[Telychian]]/[[Ontarian]]
 
|style="background:{{period color|Telychian}}"| [[Telychian]]/[[Ontarian]]
 
|style="background:{{period color|Telychian}}"| 438.5 ±&nbsp;1.1<sup>*</sup>
 
|style="background:{{period color|Telychian}}"| 438.5 ±&nbsp;1.1<sup>*</sup>
Line 349: Line 349:
 
|rowspan="3" style="background:{{period color|Furongian}}"| [[Furongian]]
 
|rowspan="3" style="background:{{period color|Furongian}}"| [[Furongian]]
 
|style="background:{{period color|Stage 10}}"| [[Cambrian Stage 10|Stage 10]]
 
|style="background:{{period color|Stage 10}}"| [[Cambrian Stage 10|Stage 10]]
|rowspan="10"| Major diversification of life in the [[Cambrian Explosion]]. Numerous fossils; most modern [[Animalia|animal]] [[Phylum|phyla]] appear. First [[chordate]]s appear, along with a number of extinct, problematic phyla. Reef-building [[Archaeocyatha]] abundant; then vanish. [[Trilobite]]s, [[priapulid]] worms, [[Porifera|sponges]], inarticulate [[brachiopod]]s (unhinged lampshells), and many other animals numerous. [[Anomalocarid]]s are giant predators, while many Ediacaran fauna die out. [[Prokaryote]]s, [[protist]]s (e.g., [[foram]]s), [[fungus|fungi]] and [[algae]] continue to present day. [[Gondwana]] emerges. [[Petermann Orogeny]] on the [[Australia (Continent)|Australian Continent]] tapers off (550&ndash;535 [[Year#SI_prefix_multipliers|Ma]]). Ross Orogeny in Antarctica. [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]], majority of orogenic activity from 514&ndash;500 [[Year#SI_prefix_multipliers|Ma]]. [[Lachlan Orogeny]] on [[Australia (Continent)|Australian Continent]], c. 540&ndash;440 [[Year#SI_prefix_multipliers|Ma]]. [[Earth's atmosphere|Atmospheric]] CO<sub>2</sub> content roughly 20&ndash;35 times present-day ([[Holocene]]) levels (6000 ppmv compared to today's 385 ppmv)<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />
+
|rowspan="10"| Major diversification of life in the [[Cambrian Explosion]]. Numerous fossils; most modern [[Animalia|animal]] [[Phylum|phyla]] appear. First [[chordate]]s appear, along with a number of extinct, problematic phyla. Reef-building [[Archaeocyatha]] abundant; then vanish. [[Trilobite]]s, [[priapulid]] worms, [[Porifera|sponges]], inarticulate [[brachiopod]]s (unhinged lampshells), and many other animals numerous. [[Anomalocarid]]s are giant predators, while many Ediacaran fauna die out. [[Prokaryote]]s, [[protist]]s (e.g., [[foram]]s), [[fungus|fungi]] and [[algae]] continue to present day. [[Gondwana]] emerges. [[Petermann Orogeny]] on the [[Australia (continent)|Australian continent]] tapers off (550&ndash;535 [[Year#SI prefix multipliers|Ma]]). Ross Orogeny in Antarctica. [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]], majority of orogenic activity from 514&ndash;500 [[Year#SI prefix multipliers|Ma]]. [[Lachlan Orogeny]] on [[Australia (continent)|Australian continent]], c. 540&ndash;440 [[Year#SI prefix multipliers|Ma]]. [[Atmosphere of Earth|Atmospheric]] CO<sub>2</sub> content roughly 20&ndash;35 times present-day ([[Holocene]]) levels (6000 ppmv compared to today's 385 ppmv)<ref name="Royer" /><ref name="atmospheric-carbon-dioxide" />
 
|style="background:{{period color|Stage 10}}"| c. 489.5
 
|style="background:{{period color|Stage 10}}"| c. 489.5
 
|-
 
|-
Line 386: Line 386:
 
|rowspan="3" style="background:{{period color|Neoproterozoic}}"| [[Neoproterozoic|Neo-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|rowspan="3" style="background:{{period color|Neoproterozoic}}"| [[Neoproterozoic|Neo-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|style="background:{{period color|Ediacaran}}"| [[Ediacaran]]
 
|style="background:{{period color|Ediacaran}}"| [[Ediacaran]]
|colspan="3"| Good [[fossil]]s of the first [[Metazoa|multi-celled animal]]s. [[Ediacaran biota]] flourish worldwide in seas. Simple [[trace fossil]]s of possible worm-like ''[[Trichophycus pedum|Trichophycus]]'', etc. First [[Porifera|sponge]]s and [[Trilobita|trilobitomorph]]s. Enigmatic forms include many soft-jellied creatures shaped like bags, disks, or quilts (like''[[Dickinsonia]]''). [[Taconic Orogeny]] in North America. [[Aravalli Range]] [[orogeny]] in [[Indian Subcontinent]]. Beginning of [[Petermann Orogeny]] on [[Australia (Continent)|Australian Continent]]. Beardmore Orogeny in Antarctica, 633&ndash;620 [[Year#SI_prefix_multipliers|Ma]].
+
|colspan="3"| Good [[fossil]]s of the first [[Metazoa|multi-celled animal]]s. [[Ediacaran biota]] flourish worldwide in seas. Simple [[trace fossil]]s of possible worm-like ''[[Trichophycus pedum|Trichophycus]]'', etc. First [[Porifera|sponge]]s and [[Trilobita|trilobitomorph]]s. Enigmatic forms include many soft-jellied creatures shaped like bags, disks, or quilts (like''[[Dickinsonia]]''). [[Taconic Orogeny]] in North America. [[Aravalli Range]] [[orogeny]] in [[Indian Subcontinent]]. Beginning of [[Petermann Orogeny]] on [[Australia (continent)|Australian continent]]. Beardmore Orogeny in Antarctica, 633&ndash;620 [[Year#SI prefix multipliers|Ma]].
 
|style="background:{{period color|Ediacaran}}"| c. 635<sup>*</sup>
 
|style="background:{{period color|Ediacaran}}"| c. 635<sup>*</sup>
 
|-
 
|-
 
|style="background:{{period color|Cryogenian}}"| [[Cryogenian]]
 
|style="background:{{period color|Cryogenian}}"| [[Cryogenian]]
|colspan="3"| Possible "[[Snowball Earth]]" period. [[Fossil]]s still rare. [[Rodinia]] landmass begins to break up. Late Ruker / Nimrod Orogeny in Antarctica tapers off.
+
|colspan="3"| Possible "[[Snowball Earth]]" period. [[Fossil]]s still rare. [[Rodinia]] landmass begins to break up. Late Ruker / Nimrod Orogeny in Antarctica tapers of<bef.
 
|style="background:{{period color|Cryogenian}}"| 850<ref name="absolute-age">Defined by absolute age ([[Global Standard Stratigraphic Age]]).</ref>
 
|style="background:{{period color|Cryogenian}}"| 850<ref name="absolute-age">Defined by absolute age ([[Global Standard Stratigraphic Age]]).</ref>
 
|-
 
|-
 
|style="background:{{period color|Tonian}}"| [[Tonian]]
 
|style="background:{{period color|Tonian}}"| [[Tonian]]
|colspan="3"| [[Rodinia]] supercontinent persists. [[Trace fossil]]s of simple [[multicellular|multi-celled]] [[Eukaryota|eukaryote]]s. First radiation of [[dinoflagellate]]-like [[acritarch]]s. [[Grenville Orogeny]] tapers off in North America. [[Pan-African orogeny]] in Africa. Lake Ruker / Nimrod Orogeny in Antarctica, 1000&nbsp;±&nbsp;150 [[Year#SI_prefix_multipliers|Ma]]. Edmundian Orogeny (c. 920 – 850 [[Year#SI_prefix_multipliers|Ma]]), [[Gascoyne Complex]], Western Australia. [[Adelaide Geosyncline]] laid down on [[Australia (continent)|Australian Continent]], beginning of [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]] in that continent.
+
|colspan="3"| [[Rodinia]] supercontinent persists. [[Trace fossil]]s of simple [[multicellular|multi-celled]] [[Eukaryota|eukaryote]]s. First radiation of [[dinoflagellate]]-like [[acritarch]]s. [[Grenville Orogeny]] tapers off in North America. [[Pan-African orogeny]] in Africa. Lake Ruker / Nimrod Orogeny in Antarctica, 1000&nbsp;±&nbsp;150 [[Year#SI prefix multipliers|Ma]]. Edmundian Orogeny (c. 920 – 850 [[Year#SI prefix multipliers|Ma]]), [[Gascoyne Complex]], Western Australia. [[Adelaide Geosyncline]] laid down on [[Australia (continent)|Australian continent]], beginning of [[Adelaide Geosyncline|Adelaide Geosyncline (Delamerian Orogeny)]] in that continent.
 
|style="background:{{period color|Tonian}}"| 1000<ref name="absolute-age" />
 
|style="background:{{period color|Tonian}}"| 1000<ref name="absolute-age" />
 
|-
 
|-
 
|rowspan="3" style="background:{{period color|Mesoproterozoic}}"| [[Mesoproterozoic|Meso-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|rowspan="3" style="background:{{period color|Mesoproterozoic}}"| [[Mesoproterozoic|Meso-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|style="background:{{period color|Stenian}}"| [[Stenian]]
 
|style="background:{{period color|Stenian}}"| [[Stenian]]
|colspan="3"| Narrow highly [[Metamorphic rock|metamorphic]] belts due to [[orogeny]] as [[Rodinia]] forms. Late Ruker / Nimrod Orogeny in Antarctica possibly begins. Musgrave Orogeny (c. 1080 [[Year#SI_prefix_multipliers|Ma]]), [[Musgrave Block]], [[Central Australia]].
+
|colspan="3"| Narrow highly [[Metamorphic rock|metamorphic]] belts due to [[orogeny]] as [[Rodinia]] forms. Late Ruker / Nimrod Orogeny in Antarctica possibly begins. Musgrave Orogeny (c. 1080 [[Year#SI prefix multipliers|Ma]]), [[Musgrave Block]], [[Central Australia]].
 
|style="background:{{period color|Stenian}}"| 1200<ref name="absolute-age" />
 
|style="background:{{period color|Stenian}}"| 1200<ref name="absolute-age" />
 
|-
 
|-
Line 407: Line 407:
 
|-
 
|-
 
|style="background:{{period color|Calymmian}}"| [[Calymmian]]
 
|style="background:{{period color|Calymmian}}"| [[Calymmian]]
|colspan="3"| [[Platform cover]]s expand. Barramundi Orogeny, [[McArthur Basin]], [[Northern Australia]], and Isan Orogeny, [[circa|c.]]1600 [[Year#SI_prefix_multipliers|Ma]], Mount Isa Block, Queensland
+
|colspan="3"| [[Platform cover]]s expand. Barramundi Orogeny, [[McArthur Basin]], [[Northern Australia]], and Isan Orogeny, [[circa|c.]]1600 [[Year#SI prefix multipliers|Ma]], Mount Isa Block, Queensland
 
|style="background:{{period color|Calymmian}}"| 1600<ref name="absolute-age" />
 
|style="background:{{period color|Calymmian}}"| 1600<ref name="absolute-age" />
 
|-
 
|-
 
|rowspan="4" style="background:{{period color|Paleoproterozoic}}"| [[Paleoproterozoic|Paleo-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|rowspan="4" style="background:{{period color|Paleoproterozoic}}"| [[Paleoproterozoic|Paleo-<br />proterozoic]]<ref name="Precambrian-Time" />
 
|style="background:{{period color|Statherian}}"| [[Statherian]]
 
|style="background:{{period color|Statherian}}"| [[Statherian]]
|colspan="3"| First [[Eukaryote|complex single-celled life]]: [[protist]]s with nuclei. [[Columbia (supercontinent)|Columbia]] is the primordial supercontinent. Kimban Orogeny in Australian Continent ends. Yapungku Orogeny on [[Yilgarn craton]], in Western Australia. Mangaroon Orogeny, 1680&ndash;1620 [[Year#SI_prefix_multipliers|Ma]], on the [[Gascoyne Complex]] in Western Australia. Kararan Orogeny (1650– [[Year#SI_prefix_multipliers|Ma]]), Gawler Craton, [[South Australia]].
+
|colspan="3"| First [[Eukaryote|complex single-celled life]]: [[protist]]s with nuclei. [[Columbia (supercontinent)|Columbia]] is the primordial supercontinent. Kimban Orogeny in Australian continent ends. Yapungku Orogeny on [[Yilgarn craton]], in Western Australia. Mangaroon Orogeny, 1680&ndash;1620 [[Year#SI prefix multipliers|Ma]], on the [[Gascoyne Complex]] in Western Australia. Kararan Orogeny (1650– [[Year#SI prefix multipliers|Ma]]), Gawler Craton, [[South Australia]].
 
|style="background:{{period color|Statherian}}"| 1800<ref name="absolute-age" />
 
|style="background:{{period color|Statherian}}"| 1800<ref name="absolute-age" />
 
|-
 
|-
 
|style="background:{{period color|Orosirian}}"| [[Orosirian]]
 
|style="background:{{period color|Orosirian}}"| [[Orosirian]]
|colspan="3"| The [[Earth's atmosphere|atmosphere]] becomes [[oxygen]]ic. [[Vredefort crater|Vredefort]] and [[Sudbury Basin]] asteroid impacts. Much [[orogeny]]. [[Penokean orogeny|Penokean]] and [[Trans-Hudsonian Orogeny|Trans-Hudsonian Orogenies]] in North America. Early Ruker Orogeny in Antarctica, 2000–1700 [[Year#SI_prefix_multipliers|Ma]]. Glenburgh Orogeny, [[Gascoyne Complex|Glenburgh Terrane]], [[Australia (Continent)|Australian Continent]] [[circa|c.]] 2005–1920 [[Year#SI prefix multipliers|Ma]]. Kimban Orogeny, [[Gawler craton]] in Australian Continent begins.
+
|colspan="3"| The [[Atmosphere of Earth|atmosphere]] becomes [[oxygen]]ic. [[Vredefort crater|Vredefort]] and [[Sudbury Basin]] asteroid impacts. Much [[orogeny]]. [[Penokean orogeny|Penokean]] and [[Trans-Hudsonian Orogeny|Trans-Hudsonian Orogenies]] in North America. Early Ruker Orogeny in Antarctica, 2000–1700 [[Year#SI prefix multipliers|Ma]]. Glenburgh Orogeny, [[Gascoyne Complex|Glenburgh Terrane]], [[Australia (continent)|Australian continent]] [[circa|c.]] 2005–1920 [[Year#SI prefix multipliers|Ma]]. Kimban Orogeny, [[Gawler craton]] in Australian continent begins.
 
|style="background:{{period color|Orosirian}}"| 2050<ref name="absolute-age" />
 
|style="background:{{period color|Orosirian}}"| 2050<ref name="absolute-age" />
 
|-
 
|-
Line 424: Line 424:
 
|-
 
|-
 
|style="background:{{period color|Siderian}}"| [[Siderian]]
 
|style="background:{{period color|Siderian}}"| [[Siderian]]
|colspan="3"| [[Oxygen catastrophe]]: [[banded iron formation]]s forms. Sleaford Orogeny on [[Australia (Continent)|Australian Continent]], [[Gawler Craton]] 2440&ndash;2420 [[Year#SI_prefix_multipliers|Ma]].
+
|colspan="3"| [[Oxygen catastrophe]]: [[banded iron formation]]s forms. Sleaford Orogeny on [[Australia (continent)|Australian continent]], [[Gawler Craton]] 2440&ndash;2420 [[Year#SI prefix multipliers|Ma]].
 
|style="background:{{period color|Siderian}}"| 2500<ref name="absolute-age" />
 
|style="background:{{period color|Siderian}}"| 2500<ref name="absolute-age" />
 
|-
 
|-
 
|rowspan="4" style="background:{{period color|Archean}}"| [[Archean]]{{cn|date=December 2014}}<ref name="Precambrian-Time" />
 
|rowspan="4" style="background:{{period color|Archean}}"| [[Archean]]{{cn|date=December 2014}}<ref name="Precambrian-Time" />
 
|style="background:{{period color|Neoarchean}}"| [[Neoarchean]]<ref name="Precambrian-Time" />
 
|style="background:{{period color|Neoarchean}}"| [[Neoarchean]]<ref name="Precambrian-Time" />
|colspan="4"| Stabilization of most modern [[craton]]s; possible [[Mantle (geology)|mantle]] overturn event. Insell Orogeny, 2650&nbsp;±&nbsp;150 [[Year#SI_prefix_multipliers|Ma]]. [[Abitibi greenstone belt]] in present-day [[Ontario]] and [[Quebec]] begins to form, stabilizes by 2600 [[Year#SI_prefix_multipliers|Ma]].
+
|colspan="4"| Stabilization of most modern [[craton]]s; possible [[Mantle (geology)|mantle]] overturn event. Insell Orogeny, 2650&nbsp;±&nbsp;150 [[Year#SI prefix multipliers|Ma]]. [[Abitibi greenstone belt]] in present-day [[Ontario]] and [[Quebec]] begins to form, stabilizes by 2600 [[Year#SI prefix multipliers|Ma]].
 
|style="background:{{period color|Neoarchean}}"| 2800<ref name="absolute-age" />
 
|style="background:{{period color|Neoarchean}}"| 2800<ref name="absolute-age" />
 
|-
 
|-
 
|style="background:{{period color|Mesoarchean}}"| [[Mesoarchean]]<ref name="Precambrian-Time" />
 
|style="background:{{period color|Mesoarchean}}"| [[Mesoarchean]]<ref name="Precambrian-Time" />
|colspan="4"| First [[stromatolite]]s (probably [[colony (biology)|colonial]] [[cyanobacteria]]). Oldest [[macrofossil]]s. Humboldt Orogeny in Antarctica. [[Blake River Megacaldera Complex]] begins to form in present-day [[Ontario]] and [[Quebec]], ends by roughly 2696 [[Year#SI_prefix_multipliers|Ma]].
+
|colspan="4"| First [[stromatolite]]s (probably [[colony (biology)|colonial]] [[cyanobacteria]]). Oldest [[macrofossil]]s. Humboldt Orogeny in Antarctica. [[Blake River Megacaldera Complex]] begins to form in present-day [[Ontario]] and [[Quebec]], ends by roughly 2696 [[Year#SI prefix multipliers|Ma]].
 
|style="background:{{period color|Mesoarchean}}"| 3200<ref name="absolute-age" />
 
|style="background:{{period color|Mesoarchean}}"| 3200<ref name="absolute-age" />
 
|-
 
|-
Line 444: Line 444:
 
|style="background:{{period color|Eoarchean}}"| 4000
 
|style="background:{{period color|Eoarchean}}"| 4000
 
|-
 
|-
|rowspan="4" style="background:{{period color|Hadean}}"| [[Hadean]]<br />{{cn|date=December 2014}}<ref name="Precambrian-Time" /><ref name="hadeon-not-formal">Though commonly used, the [[Hadean]] is not a formal eon and no lower bound for the Archean and Eoarchean have been agreed upon. The Hadean has also sometimes been called the Priscoan or the Azoic. Sometimes, the Hadean can be found to be subdivided according to the [[lunar geologic time scale]]. These eras include the [[Cryptic era|Cryptic]] and [[Basin Groups]] (which are subdivisions of the [[Pre-Nectarian]] era), [[Nectarian]], and [[Early Imbrian]] units.</ref>
+
|rowspan="4" style="background:{{period color|Hadean}}"| [[Hadean]]<br />{{cn|date=December 2014}}<ref name="Precambrian-Time" /><ref name="hadeon-not-formal">Though commonly used, the [[Hadean]] is not a formal eon and no lower bound for the Archean and Eoarchean have been agreed upon. The Hadean has also sometimes been called the Priscoan or the Azoic. Sometimes, the Hadean can be found to be subdivided according to the [[lunar geologic timescale]]. These eras include the [[Cryptic era|Cryptic]] and [[Basin Groups]] (which are subdivisions of the [[Pre-Nectarian]] era), [[Nectarian]], and [[Early Imbrian]] units.</ref>
|style="background:{{period color|Hadean}}"| [[Early Imbrian]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names">These unit names were taken from the [[Lunar geologic timescale]] and refer to geologic events that did not occur on Earth. Their use for Earth geology is unofficial. Note that their start times do not dovetail perfectly with the later, terrestrially defined boundaries.</ref>
+
|style="background:{{period color|Hadean}}"| [[Early Imbrian]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names">These unit names were taken from the [[lunar geologic timescale]] and refer to geologic events that did not occur on Earth. Their use for Earth geology is unofficial. Note that their start times do not dovetail perfectly with the later, terrestrially defined boundaries.</ref>
|colspan="4"| Indirect [[photosynthetic]] evidence (e.g., [[kerogen]]) of primordial life. This era overlaps the end of the [[Late Heavy Bombardment]] of the [[inner solar system|inner]] [[solar system]].
+
|colspan="4"| Indirect [[photosynthetic]] evidence (e.g., [[kerogen]]) of primordial life. This era overlaps the end of the [[Late Heavy Bombardment]] of the [[Inner Solar System|Inner]] [[Solar System]].
 
|style="background:{{period color|Hadean}}"| c.4100
 
|style="background:{{period color|Hadean}}"| c.4100
 
|-
 
|-
Line 454: Line 454:
 
|-
 
|-
 
|style="background:{{period color|Hadean}}"| [[Basin Groups]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
 
|style="background:{{period color|Hadean}}"| [[Basin Groups]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
|colspan="4"| Oldest known rock (4030 [[Year#SI_prefix_multipliers|Ma]]).<ref name="Oldest-rock">{{cite journal|doi=10.1007/s004100050465|title=Priscoan (4.00&ndash;4.03 Ga) orthogneisses from northwestern Canada|year=1999|author=Bowring, Samuel A.|journal=Contributions to Mineralogy and Petrology|volume=134|issue=1|pages=3|last2=Williams|first2=Ian S.|bibcode=1999CoMP..134....3B}} The oldest rock on Earth is the [[Acasta Gneiss]], and it dates to 4.03 Ga, located in the [[Northwest Territories]] of Canada.</ref> The first [[organism|life form]]s and [[self-replication|self-replicating]] [[RNA]] [[molecule]]s evolve around 4000 [[Year#SI_prefix_multipliers|Ma]], after the [[Late Heavy Bombardment]] ends on Earth. [[Napier_Mountains|Napier]] Orogeny in Antarctica, 4000&nbsp;±&nbsp;200 [[Year#SI_prefix_multipliers|Ma]].
+
|colspan="4"| Oldest known rock (4030 [[Year#SI prefix multipliers|Ma]]).<ref name="Oldest-rock">{{cite journal|doi=10.1007/s004100050465|title=Priscoan (4.00&ndash;4.03 Ga) orthogneisses from northwestern Canada|year=1999|author=Bowring, Samuel A.|journal=Contributions to Mineralogy and Petrology|volume=134|issue=1|pages=3|last2=Williams|first2=Ian S.|bibcode=1999CoMP..134....3B}} The oldest rock on Earth is the [[Acasta Gneiss]], and it dates to 4.03 Ga, located in the [[Northwest Territories]] of Canada.</ref> The first [[organism|life form]]s and [[self-replication|self-replicating]] [[RNA]] [[molecule]]s evolve around 4000 [[Year#SI prefix multipliers|Ma]], after the [[Late Heavy Bombardment]] ends on Earth. [[Napier Mountains|Napier]] Orogeny in Antarctica, 4000&nbsp;±&nbsp;200 [[Year#SI prefix multipliers|Ma]].
 
|style="background:{{period color|Hadean}}"| c.4500
 
|style="background:{{period color|Hadean}}"| c.4500
 
|-
 
|-
 
|style="background:{{period color|Hadean}}"| [[Cryptic era|Cryptic]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
 
|style="background:{{period color|Hadean}}"| [[Cryptic era|Cryptic]]<ref name="Precambrian-Time" /><ref name="Lunar-geologic-timescale-names" />
|colspan="4"| Oldest known [[mineral]] ([[Zircon]], 4404&nbsp;±&nbsp;8 [[Year#SI_prefix_multipliers|Ma]]).<ref name="geology-wisc-edu">[http://www.geology.wisc.edu/%7Evalley/zircons/Wilde2001Nature.pdf Geology.wisc.edu]</ref> Formation of [[Moon]] (4533 [[Year#SI_prefix_multipliers|Ma]]), probably from [[Giant_impact_hypothesis|giant impact]]. Formation of [[Earth]] (4567.17 to 4570 [[Year#SI_prefix_multipliers|Ma]])
+
|colspan="4"| Oldest known [[mineral]] ([[Zircon]], 4404&nbsp;±&nbsp;8 [[Year#SI prefix multipliers|Ma]]).<ref name="geology-wisc-edu">[http://www.geology.wisc.edu/%7Evalley/zircons/Wilde2001Nature.pdf Geology.wisc.edu]</ref> Formation of [[Moon]] (4533 [[Year#SI prefix multipliers|Ma]]), probably from [[Giant impact hypothesis|giant impact]]. Formation of [[Earth]] (4567.17 to 4570 [[Year#SI prefix multipliers|Ma]])
 
|style="background:{{period color|Hadean}}"| c. 4567
 
|style="background:{{period color|Hadean}}"| c. 4567
 
|}</div>
 
|}</div>
Line 469: Line 469:
 
</div>
 
</div>
 
</div>
 
</div>
[[Category:Historical geology|{{PAGENAME}}]]
+
[[Category:Historical geology]]
[[Category:Historical period templates|Geologic time scale]]
+
[[Category:Historical period templates]]
[[Category:Geology templates|{{PAGENAME}}]]
+
[[Category:Geology templates]]
  
 
</noinclude>
 
</noinclude>

Revision as of 13:55, 13 May 2015