Difference between revisions of "Template:Graph families defined by their automorphisms"

From blackwiki
Jump to navigation Jump to search
imported>David Eppstein
(noinclude)
imported>David Eppstein
(biregular)
Line 7: Line 7:
 
<tr><td><math>\downarrow</math><sub>(if&nbsp;connected)</sub></td><td></td><td></td></tr>
 
<tr><td><math>\downarrow</math><sub>(if&nbsp;connected)</sub></td><td></td><td></td></tr>
 
<tr><td style="vertical-align:middle;">[[half-transitive graph|vertex- and edge-transitive]]</td><td style="vertical-align:middle;"><math>\rightarrow</math></td><td style="vertical-align:middle;">[[semi-symmetric graph|edge-transitive and regular]]</td><td style="vertical-align:middle;"><math>\rightarrow</math></td><td style="vertical-align:middle;">[[edge-transitive graph|edge-transitive]]</td></tr>
 
<tr><td style="vertical-align:middle;">[[half-transitive graph|vertex- and edge-transitive]]</td><td style="vertical-align:middle;"><math>\rightarrow</math></td><td style="vertical-align:middle;">[[semi-symmetric graph|edge-transitive and regular]]</td><td style="vertical-align:middle;"><math>\rightarrow</math></td><td style="vertical-align:middle;">[[edge-transitive graph|edge-transitive]]</td></tr>
<tr><td><math>\downarrow</math></td><td></td><td><math>\downarrow</math></td></tr>
+
<tr><td><math>\downarrow</math></td><td></td><td><math>\downarrow</math></td><td></td><td><math>\downarrow</math></td></tr>
<tr><td style="vertical-align:middle;">[[vertex-transitive graph|vertex-transitive]]</td><td style="vertical-align:middle;"><math>\rightarrow</math></td><td style="vertical-align:middle;">[[regular graph|regular]]</td></tr>
+
<tr><td style="vertical-align:middle;">[[vertex-transitive graph|vertex-transitive]]</td><td style="vertical-align:middle;"><math>\rightarrow</math></td><td style="vertical-align:middle;">[[regular graph|regular]]</td><td style="vertical-align:middle;"><math>\rightarrow</math></td><td style="vertical-align:middle;">[[biregular graph|biregular]]</td></tr>
 
<tr><td><math>\uparrow</math></td><td></td><td></td></tr>
 
<tr><td><math>\uparrow</math></td><td></td><td></td></tr>
 
<tr><td style="vertical-align:middle;">[[Cayley graph]]</td><td></td><td>[[Skew-symmetric graph|skew-symmetric]]</td><td></td><td>[[Asymmetric graph|asymmetric]]</td></tr>
 
<tr><td style="vertical-align:middle;">[[Cayley graph]]</td><td></td><td>[[Skew-symmetric graph|skew-symmetric]]</td><td></td><td>[[Asymmetric graph|asymmetric]]</td></tr>

Revision as of 00:13, 2 September 2012

Graph families defined by their automorphisms
distance-transitive<math>\rightarrow</math>distance-regular<math>\leftarrow</math>strongly regular
<math>\downarrow</math>
symmetric (arc-transitive)<math>\leftarrow</math>t-transitive, t ≥ 2
<math>\downarrow</math>(if connected)
vertex- and edge-transitive<math>\rightarrow</math>edge-transitive and regular<math>\rightarrow</math>edge-transitive
<math>\downarrow</math><math>\downarrow</math><math>\downarrow</math>
vertex-transitive<math>\rightarrow</math>regular<math>\rightarrow</math>biregular
<math>\uparrow</math>
Cayley graphskew-symmetricasymmetric

uk:Шаблон:Види графів за їхніми автоморфізмами