Difference between revisions of "Template:Infobox logical connective"

From blackwiki
Jump to navigation Jump to search
imported>Awesome Aasim
(Undid revision 879136301 by 97.112.160.172 (talk))
(→‎Usage: Jbbhj)
Line 36: Line 36:
  
 
|  label5  = [[Disjunctive normal form|Disjunctive]]
 
|  label5  = [[Disjunctive normal form|Disjunctive]]
data5  = {{{DNF|}}}
+
dalkin|}}}
 
 
|  label6  = [[Conjunctive normal form|Conjunctive]]
 
|  data6  = {{{CNF|}}}
 
 
 
|  label7  = [[Zhegalkin polynomial|Zhegalkin polynomial]]
 
|  data7  = {{{Zhegalkin|}}}
 
  
 
| header8  = [[Post's lattice|<span style="color:white;">Post's lattices</span>]]
 
| header8  = [[Post's lattice|<span style="color:white;">Post's lattices</span>]]

Revision as of 18:17, 5 February 2019

Infobox logical connective
Normal forms

[[Category:Infobox templates|Template:Remove first word]]}

| header8 = Post's lattices

| label9 = 0-preserving | data9 =

| label10 = 1-preserving | data10 =

| label11 = Monotone | data11 =

| label12 = Affine | data12 =

| label13 = Self-dual | data13 =

}}

Template documentation[view] [edit] [history] [purge]

Usage

Logical conjunction
AND
Venn diagram of Logical conjunction
Definition<math>xy</math>
Truth table<math>(0001)</math>
Logic gateAND ANSI.svg
Normal forms
[[Category:Infobox templates|Template:Remove first word]]}

| header8 = Post's lattices

| label9 = 0-preserving | data9 = yes

| label10 = 1-preserving | data10 = yes

| label11 = Monotone | data11 = no

| label12 = Affine | data12 = no

| label13 = Self-dual | data13 = yes }}

{{Infobox logical connective
| title        = Logical conjunction
| other titles = AND
| Venn diagram = Venn0001.svg
| definition   = <math>xy</math>
| truth table  = <math>(0001)</math>
| logic gate   = AND ANSI.svg
| DNF          = <math>xy</math>
| CNF          = <math>xy</math>
| Zhegalkin    = <math>xy</math>
| 0-preserving = yes
| 1-preserving = yes
| monotone     = no
| affine       = no
| self-dual    = yes
}}

Blank

{{Infobox logical connective
| title        = 
| other titles = 
| Venn diagram = 
| definition   = 
| truth table  = 
| logic gate   = 
| DNF          = 
| CNF          = 
| Zhegalkin    = 
| 0-preserving = 
| 1-preserving = 
| monotone     = 
| affine       = 
| self-dual    = 
}}

Import

To import from Russian Wikipedia, use Template:T.