Difference between revisions of "Template:Mathematical logic"

From blackwiki
Jump to navigation Jump to search
imported>Sardanaphalus
(category)
imported>Edokter
(Normalize)
Line 1: Line 1:
 
{{Navbox
 
{{Navbox
 
| name = Mathematical logic
 
| name = Mathematical logic
| state = {{{state|{{{1|<noinclude>expanded</noinclude>}}}}}}
+
| state = {{{state|autocollapse}}}
 
| title = [[Mathematical logic]]
 
| title = [[Mathematical logic]]
 
| listclass = hlist
 
| listclass = hlist
 +
| image=
  
| group1 = General
+
  | group1 = General
| list1 =
+
  | list1 =
  {{Navbox |child |groupstyle=font-weight:normal;
+
* [[Formal language]]
  | list1 = <!--(Alphabetical (by label):)-->
+
* [[Formation rule]]
 +
* [[Formal system]]
 +
* [[Deductive system]]
 +
* [[Formal proof]]
 +
* [[Formal semantics (logic)|Formal semantics]]
 +
* [[Well-formed formula]]
 +
* [[Set (mathematics)|Set]]
 +
* [[Element (mathematics)|Element]]
 +
* [[Class (set theory)|Class]]
 +
* [[Classical logic]]
 
* [[Axiom]]
 
* [[Axiom]]
* [[Class (set theory)|Class]]
 
* [[Element (mathematics)|Element]]
 
* [[Formation rule]]
 
* [[Logical consequence]]
 
 
* [[Natural deduction]]
 
* [[Natural deduction]]
 +
* [[Rule of inference]]
 
* [[Finitary relation|Relation]]
 
* [[Finitary relation|Relation]]
* [[Rule of inference]]
+
* [[Theorem]]
* [[Set (mathematics)|Set]]
+
* [[Logical consequence]]
 +
* [[Axiomatic system]]
 +
* [[Type theory]]
 
* [[Symbol (formal)|Symbol]]
 
* [[Symbol (formal)|Symbol]]
 
* [[Syntax (logic)|Syntax]]
 
* [[Syntax (logic)|Syntax]]
* [[Theorem]]
 
 
* [[Theory (mathematical logic)|Theory]]
 
* [[Theory (mathematical logic)|Theory]]
* [[Type theory]]
 
* [[Well-formed formula]]
 
  | group2 = Systems
 
  | list2 =
 
* [[Axiomatic system|Axiomatic]]
 
* [[Classical logic|Classical]]
 
* [[Deductive system|Deductive]]
 
* [[Formal system|Formal]]
 
** [[Formal language|language]]
 
** [[Formal proof|proof]]
 
** [[Formal semantics (logic)|semantics]]
 
  }}
 
  
<!---group2 omitted to maintain alternating list backgrounds--->
+
  | group2 = [[Term logic|Traditional logic]]
 
+
  | list2 =
| group3 = [[Term logic|Traditional logic]]
 
| list3 =
 
 
* [[Proposition]]
 
* [[Proposition]]
 
* [[Inference]]
 
* [[Inference]]
Line 48: Line 42:
 
* [[Venn diagram]]
 
* [[Venn diagram]]
  
| group4 = [[Propositional calculus]]<br/>[[Boolean algebra|Boolean logic]]
+
  | group3 = {{longitem|[[Propositional calculus|Propositional <br/>calculus]]<br/>[[Boolean algebra|Boolean logic]]}}
| list4 =
+
  | list3 =
 
* [[Boolean function]]s
 
* [[Boolean function]]s
 +
* [[Propositional calculus]]
 
* [[Propositional formula]]
 
* [[Propositional formula]]
 
* [[Logical connective]]s
 
* [[Logical connective]]s
 
* [[Truth table]]s
 
* [[Truth table]]s
  
| group5 = [[Predicate logic]]
+
  | group4 = [[Predicate logic]]
| list5 =
+
  | list4 =
 
* [[First-order logic|First-order]]
 
* [[First-order logic|First-order]]
 
* [[Quantifier (logic)|Quantifiers]]
 
* [[Quantifier (logic)|Quantifiers]]
Line 63: Line 58:
 
* [[Monadic predicate calculus]]
 
* [[Monadic predicate calculus]]
  
<!----------------------------------------------------------------------------->
+
  | group5 = [[Naive set theory]]
| group6 = [[Set theory]]
+
   | list5 =
| list6 =
+
* [[Set (mathematics)|Set]]
   {{Navbox |child |groupstyle=font-weight:normal;
+
* [[Empty set]]
 
 
  | group1 = [[Naive set theory|Naive]]
 
  | list1 =
 
    {{Navbox |child |groupstyle=font-weight:normal; |evenodd=swap
 
      | list1 =
 
* [[Domain of a function|Domain]]
 
 
* [[Enumeration]]
 
* [[Enumeration]]
 
* [[Extensionality]]
 
* [[Extensionality]]
 +
* [[Finite set]]
 +
* [[Infinite set]]
 +
* [[Subset]]
 +
* [[Power set]]
 +
* [[Countable set]]
 +
* [[Uncountable set]]
 +
* [[Recursive set]]
 +
* [[Domain of a function|Domain]]
 +
* [[Range (mathematics)|Range]]
 +
* [[Map (mathematics)|Map]]
 
* [[Function (mathematics)|Function]]
 
* [[Function (mathematics)|Function]]
* [[Map (mathematics)|Map]]
+
* [[Binary operation|Relation]]
 
* [[Ordered pair]]
 
* [[Ordered pair]]
* [[Range (mathematics)|Range]]
 
* [[Binary operation|Relation]]
 
      | group2 = [[Set (mathematics)|Set]] types
 
      | list2 =
 
* [[Countable set|Countable]]
 
* [[Empty set|Empty]]
 
* [[Finite set|Finite]]
 
* [[Infinite set|Infinite]]
 
* [[Power set|Power]]
 
* [[Recursive set|Recursive]]
 
* [[Subset]]
 
* [[Uncountable set|Uncountable]]
 
    }}
 
  
  | group2 = Formal
+
  | group6 = [[Set theory]]
  | list2 =
+
  | list6 =
    {{Navbox |child |groupstyle=font-weight:normal; |evenodd=swap
+
* [[Foundations of mathematics]]
    | list1 =
+
* [[Zermelo–Fraenkel set theory]]
 
* [[Axiom of choice]]
 
* [[Axiom of choice]]
    | group2 = Theories
+
* [[General set theory]]
    | list2 = <!--(by derivation or/then chronology:)-->
+
* [[Kripke–Platek set theory]]
* [[Zermelo set theory|Zermelo]]                                      <!--(1908)-->
+
* [[Von Neumann–Bernays–Gödel set theory]]
** [[General set theory|General]]                                     <!--(1998)-->
+
* [[Morse–Kelley set theory]]
* [[Zermelo–Fraenkel set theory|Zermelo–Fraenkel]]                   <!--(axiomatic, 1920s)-->
+
* [[Tarski–Grothendieck set theory]]
** [[Von Neumann–Bernays–Gödel set theory|von Neumann–Bernays–Gödel]] <!--(axiomatic, 1920s–50s, conservative)-->
 
*** [[Morse–Kelley set theory|Morse–Kelley]]                         <!--(axiomatic, 1949–60s, non-conservative)-->
 
** [[Kripke–Platek set theory|Kripke–Platek]]                        <!--(axiomatic, 1960s)-->
 
** [[Tarski–Grothendieck set theory|Tarski–Grothendieck]]             <!--(axiomatic, 1980s?, non-conservative)-->
 
}} }}
 
<!----------------------------------------------------------------------------->
 
 
 
<!---group7 omitted to maintain alternating list backgrounds--->
 
  
| group8 = [[Model theory]]
+
  | group7 = [[Model theory]]
| list8 =
+
  | list7 =
 
* [[Structure (mathematical logic)|Model]]
 
* [[Structure (mathematical logic)|Model]]
 
* [[Interpretation (logic)|Interpretation]]
 
* [[Interpretation (logic)|Interpretation]]
Line 120: Line 98:
 
* [[Validity]]
 
* [[Validity]]
  
| group9 = [[Proof theory]]
+
  | group8 = [[Proof theory]]
| list9 =
+
  | list8 =
 
* [[Formal proof]]
 
* [[Formal proof]]
 
* [[Deductive system]]
 
* [[Deductive system]]
Line 130: Line 108:
 
* [[Syntax (logic)|Syntax]]
 
* [[Syntax (logic)|Syntax]]
  
| group10 = [[Computability theory]]
+
  | group9 = [[Computability theory|Computability <br/>theory]]
| list10 =
+
  | list9 =
 
* [[Recursion]]
 
* [[Recursion]]
 
* [[Recursive set]]
 
* [[Recursive set]]
Line 140: Line 118:
 
* [[Primitive recursive function]]
 
* [[Primitive recursive function]]
  
| below = [[Foundations of mathematics]]
+
<!--| below = ...-->
 
 
 
}}<noinclude>
 
}}<noinclude>
{{Documentation
+
{{documentation|content=
| content =
+
{{collapsible option}}
{{Collapsible option |statename=optional}}
 
  
 +
==See also==
 +
*{{tl|Set theory}}
 
{{Logic templates}}
 
{{Logic templates}}
  
 
[[Category:Mathematics navigational boxes]]
 
[[Category:Mathematics navigational boxes]]
[[Category:Logic templates]]
+
[[Category:Philosophy and thinking navigational boxes]]
}}<!--(end Documentation)-->
+
 
 +
}}
 
</noinclude>
 
</noinclude>

Revision as of 08:22, 3 March 2015

Initial visibility: currently defaults to autocollapse

To set this template's initial visibility, the |state= parameter may be used:

  • |state=collapsed: {{Mathematical logic|state=collapsed}} to show the template collapsed, i.e., hidden apart from its title bar
  • |state=expanded: {{Mathematical logic|state=expanded}} to show the template expanded, i.e., fully visible
  • |state=autocollapse: {{Mathematical logic|state=autocollapse}}
    • shows the template collapsed to the title bar if there is a {{navbar}}, a {{sidebar}}, or some other table on the page with the collapsible attribute
    • shows the template in its expanded state if there are no other collapsible items on the page

If the |state= parameter in the template on this page is not set, the template's initial visibility is taken from the |default= parameter in the Collapsible option template. For the template on this page, that currently evaluates to autocollapse.

See also