Template:Elastic moduli

From blackwiki
Revision as of 20:33, 25 May 2014 by imported>DanimothWiki (Change note text so the "Note" column is somewhat smaller)
Jump to navigation Jump to search
Conversion formulas
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas.
<math>K=\,</math> <math>E=\, </math> <math>\lambda=\,</math> <math>G=\, </math> <math>\nu=\,</math> <math>M=\,</math> Notes
<math>(K,\,E)</math> <math>K</math> <math>E</math> <math>\tfrac{3K(3K-E)}{9K-E}</math> <math>\tfrac{3KE}{9K-E}</math> <math>\tfrac{3K-E}{6K}</math> <math>\tfrac{3K(3K+E)}{9K-E}</math>
<math>(K,\,\lambda)</math> <math>K</math> <math>\tfrac{9K(K-\lambda)}{3K-\lambda}</math> <math>\lambda</math> <math>\tfrac{3(K-\lambda)}{2}</math> <math>\tfrac{\lambda}{3K-\lambda}</math> <math>3K-2\lambda\,</math>
<math>(K,\,G)</math> <math>K</math> <math>\tfrac{9KG}{3K+G}</math> <math>K-\tfrac{2G}{3}</math> <math>G</math> <math>\tfrac{3K-2G}{2(3K+G)}</math> <math>K+\tfrac{4G}{3}</math>
<math>(K,\,\nu)</math> <math>K</math> <math>3K(1-2\nu)\,</math> <math>\tfrac{3K\nu}{1+\nu}</math> <math>\tfrac{3K(1-2\nu)}{2(1+\nu)}</math> <math>\nu</math> <math>\tfrac{3K(1-\nu)}{1+\nu}</math>
<math>(K,\,M)</math> <math>K</math> <math>\tfrac{9K(M-K)}{3K+M}</math> <math>\tfrac{3K-M}{2}</math> <math>\tfrac{3(M-K)}{4}</math> <math>\tfrac{3K-M}{3K+M}</math> <math>M</math>
<math>(E,\,\lambda)</math> <math>\tfrac{E + 3\lambda + R}{6}</math> <math>E</math> <math>\lambda</math> <math>\tfrac{E-3\lambda+R}{4}</math> <math>\tfrac{2\lambda}{E+\lambda+R}</math> <math>\tfrac{E-\lambda+R}{2}</math> <math>R=\sqrt{E^2+9\lambda^2 + 2E\lambda}</math>
<math>(E,\,G)</math> <math>\tfrac{EG}{3(3G-E)}</math> <math>E</math> <math>\tfrac{G(E-2G)}{3G-E}</math> <math>G</math> <math>\tfrac{E}{2G}-1</math> <math>\tfrac{G(4G-E)}{3G-E}</math>
<math>(E,\,\nu)</math> <math>\tfrac{E}{3(1-2\nu)}</math> <math>E</math> <math>\tfrac{E\nu}{(1+\nu)(1-2\nu)}</math> <math>\tfrac{E}{2(1+\nu)}</math> <math>\nu</math> <math>\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}</math>
<math>(E,\,M)</math> <math>\tfrac{3M-E+S}{6}</math> <math>E</math> <math>\tfrac{M-E+S}{4}</math> <math>\tfrac{3M+E-S}{8}</math> <math>\tfrac{E-M+S}{4M}</math> <math>M</math>

<math>S=\pm\sqrt{E^2+9M^2-10EM}</math>

There are two valid solutions.
The plus sign yields positive Poisson ratios.
The minus sign yields negative Poisson ratios.

<math>(\lambda,\,G)</math> <math>\lambda+ \tfrac{2G}{3}</math> <math>\tfrac{G(3\lambda + 2G)}{\lambda + G}</math> <math>\lambda</math> <math>G</math> <math>\tfrac{\lambda}{2(\lambda + G)}</math> <math>\lambda+2G\,</math>
<math>(\lambda,\,\nu)</math> <math>\tfrac{\lambda(1+\nu)}{3\nu}</math> <math>\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}</math> <math>\lambda</math> <math>\tfrac{\lambda(1-2\nu)}{2\nu}</math> <math>\nu</math> <math>\tfrac{\lambda(1-\nu)}{\nu}</math> Cannot be used when <math>\nu=0 \Leftrightarrow \lambda=0</math>
<math>(\lambda,\,M)</math> <math>\tfrac{M + 2\lambda}{3}</math> <math>\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}</math> <math>\lambda</math> <math>\tfrac{M-\lambda}{2}</math> <math>\tfrac{\lambda}{M+\lambda}</math> <math>M</math>
<math>(G,\,\nu)</math> <math>\tfrac{2G(1+\nu)}{3(1-2\nu)}</math> <math>2G(1+\nu)\,</math> <math>\tfrac{2 G \nu}{1-2\nu}</math> <math>G</math> <math>\nu</math> <math>\tfrac{2G(1-\nu)}{1-2\nu} </math>
<math>(G,\,M)</math> <math>M - \tfrac{4G}{3}</math> <math>\tfrac{G(3M-4G)}{M-G}</math> <math>M - 2G\,</math> <math>G</math> <math>\tfrac{M - 2G}{2M - 2G}</math> <math>M</math>
<math>(\nu,\,M)</math> <math>\tfrac{M(1+\nu)}{3(1-\nu)}</math> <math>\tfrac{M(1+\nu)(1-2\nu)}{1-\nu}</math> <math>\tfrac{M \nu}{1-\nu}</math> <math>\tfrac{M(1-2\nu)}{2(1-\nu)}</math> <math>\nu</math> <math>M</math>

The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below. Some of the possible conversions are listed in the table.

References

  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4

fr:Modèle:Modules élastiques