Template:Isotopes table/testcases2

From blackwiki
< Template:Isotopes table
Revision as of 12:25, 7 July 2019 by imported>DePiep
Jump to navigation Jump to search
Isotopes table/ref_group/table (edit talk history links # /subpages /doc /doc edit /sbox /sbox diff /test)

Template:Navbox element isotopes/line

H

H old

nuclide
symbol
Z(p) N(n) isotopic mass (u)[1] half-life
[resonance width]
decay
mode(s)Template:NUBASE2016
daughter isotope(s)[n 1] nuclear
spin and
parity
representative
isotopic
composition
(mole fraction)[n 2]
range of natural
variation
(mole fraction)
1H 1 0 Template:Val Stable[n 3][n 4] 12+ Template:Val Template:ValTemplate:Val
2H (D)[n 5] 1 1 Template:Val Stable 1+ Template:Val[n 6] Template:ValTemplate:Val
3H (T)[n 7] 1 2 Template:Val Template:Val β Template:SimpleNuclide 12+ Trace[n 8]
Template:SimpleNuclide 1 3 Template:Val Template:Val
[[[:Template:Val]]]
n Template:SimpleNuclide 2
Template:SimpleNuclide 1 4 Template:Val > Template:Val
[< 0.5 MeV]
2n Template:SimpleNuclide (​12+)
Template:SimpleNuclide 1 5 Template:Val Template:Val
[[[:Template:Val]]]
3n Template:SimpleNuclide 2#
4n Template:SimpleNuclide
Template:SimpleNuclide 1 6 Template:Val# Template:Val# 4n Template:SimpleNuclide 12+#
  1. Bold for stable isotopes.
  2. Refers to that in water.
  3. Unless proton decay occurs.
  4. This and 3He are the only stable nuclides with more protons than neutrons.
  5. Produced during Big Bang nucleosynthesis.
  6. Tank hydrogen has a Template:SimpleNuclide abundance as low as Template:Val (mole fraction).
  7. Produced during Big Bang nucleosynthesis, but not primordial, as all such atoms have since decayed to 3He.
  8. Cosmogenic
Notes
  • Commercially available materials may have been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations from the given mass and composition can occur.
  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
  • Isotope abundances are given by IUPAC Commission on Isotopic Abundances and Atomic Weights (CIAAW)

H new

Testing: H, isotopes of hydrogen (notes:mass#, unc(), unc[], resonance, daughter-st; refs:NUBASE2016, AME2016)
rows=2 +HistName=no +TracesOnly=no +AbuNaturalVar_2cols=yes +ExEn=no

Nuclide[2]
Z N Isotopic mass (Da)[3]
[n 1]
Half-life

[resonance width]
Decay
mode

Daughter
isotope

[n 2]
Spin and
parity
Natural abundance (mole fraction)
Normal proportion Range of variation
1H 1 0 Template:Val Stable[n 3][n 4] 12+ Template:Val Template:ValTemplate:Val
2H (D)[n 5] 1 1 Template:Val Stable 1+ Template:Val[n 6] Template:ValTemplate:Val
3H (T)[n 7] 1 2 Template:Val Template:Val β Template:SimpleNuclide 12+ Trace[n 8]
Template:SimpleNuclide 1 3 Template:Val Template:Val
[[[:Template:Val]]]
n Template:SimpleNuclide 2
Template:SimpleNuclide 1 4 Template:Val > Template:Val
[< 0.5 MeV]
2n Template:SimpleNuclide (​12+)
Template:SimpleNuclide 1 5 Template:Val Template:Val
[[[:Template:Val]]]
3n Template:SimpleNuclide 2#
4n Template:SimpleNuclide
Template:SimpleNuclide 1 6 Template:Val# Template:Val# 4n Template:SimpleNuclide 12+#
  1. ( )Template:Snd Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  2. Bold symbol as daughterTemplate:Snd Daughter product is stable.
  3. Unless proton decay occurs.
  4. This and 3He are the only stable nuclides with more protons than neutrons.
  5. Produced during Big Bang nucleosynthesis.
  6. Tank hydrogen has a Template:SimpleNuclide abundance as low as Template:Val (mole fraction).
  7. Produced during Big Bang nucleosynthesis, but not primordial, as all such atoms have since decayed to 3He.
  8. Cosmogenic
Notes
  • Commercially available materials may have been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations from the given mass and composition can occur.
  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
  • Isotope abundances are given by IUPAC Commission on Isotopic Abundances and Atomic Weights (CIAAW)

U

U old

nuclide
symbol
historic
name
Z(p) N(n)  
isotopic mass (u)[4]
 
half-life[5] decay
mode(s)[6]

[n 1]

daughter
isotope(s)[n 2]
nuclear
spin and
parity
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
235U[n 3][n 4][n 5] Actin Uranium
Actino-Uranium
92 143 235.0439299(20) 7.04(1)×108 y α 231Th 7/2− [0.007204(6)] 0.007198–
0.007207
SF (7×10−9%) (various)
CD (8×10−10%) 186Hf
25Ne
24Ne
235mU 0.0765(4) keV ~26 min IT 235U 1/2+
236U Thoruranium[7] 92 144 236.045568(2) 2.342(3)×107 y α 232Th 0+
SF (9.6×10−8%) (various)
236m1U 1052.89(19) keV 100(4) ns (4)−
236m2U 2750(10) keV 120(2) ns (0+)
237U 92 145 237.0487302(20) 6.75(1) d β 237Np 1/2+
238U[n 6][n 3][n 4] Uranium I 92 146 238.0507882(20) 4.468(3)×109 y α 234Th 0+ [0.992742(10)] 0.992739–
0.992752
SF (5.45×10−5%) (various)
ββ (2.19×10−10%) 238Pu
238mU 2557.9(5) keV 280(6) ns 0+
  1. Abbreviations:
    CD: Cluster decay
    EC: Electron capture
    IT: Isomeric transition
    SF: Spontaneous fission
  2. Bold for stable isotopes, bold italics for nearly-stable isotopes (half-life longer than the age of the universe)
  3. 3.0 3.1 Primordial radionuclide
  4. 4.0 4.1 Used in Uranium–lead dating
  5. Important in nuclear reactors
  6. Used in uranium–uranium dating
+ Notes

U new

Nuclide[8]
[n 1]
Historic
name
Z N Isotopic mass (Da)[9]
Half-life
Decay
mode

[n 2]
Daughter
isotope

[n 3]
Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
235U[n 4][n 5][n 6] Actin Uranium
Actino-Uranium
92 143 235.0439299(20) 7.04(1)×108 y α 231Th 7/2− [0.007204(6)] 0.007198–
0.007207
SF (7×10−9%) (various)
CD (8×10−10%) 186Hf
25Ne
24Ne
235mU 0.0765(4) keV ~26 min IT 235U 1/2+
236U Thoruranium[7] 92 144 236.045568(2) 2.342(3)×107 y α 232Th 0+
SF (9.6×10−8%) (various)
236m1U 1052.89(19) keV 100(4) ns (4)−
236m2U 2750(10) keV 120(2) ns (0+)
237U 92 145 237.0487302(20) 6.75(1) d β 237Np 1/2+
238U[n 7][n 4][n 5] Uranium I 92 146 238.0507882(20) 4.468(3)×109 y α 234Th 0+ [0.992742(10)] 0.992739–
0.992752
SF (5.45×10−5%) (various)
ββ (2.19×10−10%) 238Pu
238mU 2557.9(5) keV 280(6) ns 0+
  1. mUTemplate:Snd Excited nuclear isomer.
  2. Modes of decay:
    CD: Cluster decay
    EC: Electron capture
    IT: Isomeric transition
    SF: Spontaneous fission
  3. Bold italics symbol as daughterTemplate:Snd Daughter product is nearly stable.
  4. 4.0 4.1 Primordial radionuclide
  5. 5.0 5.1 Used in Uranium–lead dating
  6. Important in nuclear reactors
  7. Used in uranium–uranium dating

Hs

Hs old

nuclide
symbol
Z(p) N(n)  
Isotopic mass (u)
 
Half-life Decay
mode(s)
Daughter
isotope(s)
Nuclear
spin and
parity
Excitation energy
263Hs 108 155 263.12856(37)# 760(40) µs α 259Sg 7/2+#
264Hs 108 156 264.12836(3) 540(300) µs α (50%) 260Sg 0+
SF (50%) (various)
265Hs 108 157 265.129793(26) 1.96(0.16) ms α 261Sg 9/2+#
265mHs 300(70) keV 360(150) µs α 261Sg 3/2+#
266Hs[n 1] 108 158 266.13005(4) 3.02(0.54) ms α (68%) 262Sg 0+
SF (32%)[10] (various)
266mHs 1100(70) keV 280(220) ms α 262Sg 9-#
267Hs 108 159 267.13167(10)# 55(11) ms α 263Sg 5/2+#
267mHs[n 2] 39(24) keV 990(90) µs α 263Sg
268Hs 108 160 268.13187(30)# 1.42(1.13) s α 264Sg 0+
269Hs[n 3] 108 161 269.13375(13)# 16 s α 265Sg 9/2+#
270Hs 108 162 270.13429(27)# 10 s α 266Sg 0+
271Hs 108 163 271.13717(32)# ~4 s α 267Sg
273Hs[n 4] 108 165 273.14168(40)# 510 ms[11] α 269Sg 3/2+#
275Hs[n 5] 108 167 275.14667(63)# 290(150) ms α 271Sg
277Hs[n 6] 108 169 277.15190(58)# 11(9) ms SF (various) 3/2+#
  1. Not directly synthesized, occurs as decay product of 270Ds
  2. Existence of this isomer is unconfirmed
  3. Not directly synthesized, occurs in decay chain of 277Cn
  4. Not directly synthesized, occurs in decay chain of 285Fl
  5. Not directly synthesized, occurs in decay chain of 287Fl
  6. Not directly synthesized, occurs in decay chain of 289Fl
Notes
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
  • # = Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses, ( )

Hs new

Nuclide[12]
[n 1]
Z N Isotopic mass (Da)[13]
[n 2]
Half-life
Decay
mode

[n 3]
Daughter
isotope

Spin and
parity
[n 4]
Excitation energy
263Hs 108 155 263.12856(37)# 760(40) µs α 259Sg 7/2+#
264Hs 108 156 264.12836(3) 540(300) µs α (50%) 260Sg 0+
SF (50%) (various)
265Hs 108 157 265.129793(26) 1.96(0.16) ms α 261Sg 9/2+#
265mHs 300(70) keV 360(150) µs α 261Sg 3/2+#
266Hs[n 5] 108 158 266.13005(4) 3.02(0.54) ms α (68%) 262Sg 0+
SF (32%)[14] (various)
266mHs 1100(70) keV 280(220) ms α 262Sg 9-#
267Hs 108 159 267.13167(10)# 55(11) ms α 263Sg 5/2+#
267mHs[n 6] 39(24) keV 990(90) µs α 263Sg
268Hs 108 160 268.13187(30)# 1.42(1.13) s α 264Sg 0+
269Hs[n 7] 108 161 269.13375(13)# 16 s α 265Sg 9/2+#
270Hs 108 162 270.13429(27)# 10 s α 266Sg 0+
271Hs 108 163 271.13717(32)# ~4 s α 267Sg
273Hs[n 8] 108 165 273.14168(40)# 510 ms[11] α 269Sg 3/2+#
275Hs[n 9] 108 167 275.14667(63)# 290(150) ms α 271Sg
277Hs[n 10] 108 169 277.15190(58)# 11(9) ms SF (various) 3/2+#
  1. mHsTemplate:Snd Excited nuclear isomer.
  2. #Template:Snd Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  3. Modes of decay:
    SF: Spontaneous fission
  4. #Template:Snd Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Not directly synthesized, occurs as decay product of 270Ds
  6. Existence of this isomer is unconfirmed
  7. Not directly synthesized, occurs in decay chain of 277Cn
  8. Not directly synthesized, occurs in decay chain of 285Fl
  9. Not directly synthesized, occurs in decay chain of 287Fl
  10. Not directly synthesized, occurs in decay chain of 289Fl

References

  1. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  2. Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Template:NUBASE2016
  3. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  4. Wang, M.; Audi, G.; Kondev, F.G.; Huang, W.J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003. doi:10.1088/1674-1137/41/3/030003.
  5. Audi, G.; Kondev, F.G.; Wang, M.; Huang, W.J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. doi:10.1088/1674-1137/41/3/030001.
  6. "Universal Nuclide Chart". nucleonica.
  7. 7.0 7.1 Trenn, Thaddeus J. (1978). "Thoruranium (U-236) as the extinct natural parent of thorium: The premature falsification of an essentially correct theory". Annals of Science. 35 (6): 581–97. doi:10.1080/00033797800200441.
  8. Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Template:NUBASE2016
  9. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  10. Dieter Ackermann (September 8, 2011). "270Ds and Its Decay Products – Decay Properties and Experimental Masses" (PDF). The 4th International conference on the Chemistry and Physics of Transactinide Elements, 5–11 September, Sochi, Russia. Cite journal requires |journal= (help)
  11. 11.0 11.1 Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dimitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Karpov, A. V.; Popeko, A. G.; Sabel'nikov, A. V.; Svirikhin, A. I.; Vostokin, G. K.; Hamilton, J. H.; Kovrinzhykh, N. D.; Schlattauer, L.; Stoyer, M. A.; Gan, Z.; Huang, W. X.; Ma, L. (30 January 2018). "Neutron-deficient superheavy nuclei obtained in the 240Pu+48Ca reaction". Physical Review C. 97 (14320): 1–10. Bibcode:2018PhRvC..97a4320U. doi:10.1103/PhysRevC.97.014320.
  12. Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Template:NUBASE2016
  13. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  14. Dieter Ackermann (September 8, 2011). "270Ds and Its Decay Products – Decay Properties and Experimental Masses" (PDF). The 4th International conference on the Chemistry and Physics of Transactinide Elements, 5–11 September, Sochi, Russia. Cite journal requires |journal= (help)